Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transposition of an antibiotic resistance element in mycobacteria


BACTERIAL resistance to antibiotics is often plasmid-mediated and the associated resistance genes encoded by transposable elements. Mycobacteria, including the human pathogens Mycobacterium tuberculosis and M. leprae, are resistant to many antibiotics, and their cell-surface structure is believed to be largely responsible for the wide range of resistance phenotypes. Antibiotic-resistance plasmids have so far not been implicated in resistance of mycobacteria to antibiotics. Nevertheless, antibiotic-modifying activities such as aminoglycoside acetyltransferases1 and phosphotransferases1 have been detected in fast-growing species2,3. β-lactamases have also been found in most fast- and slow-growing mycobacteria. To date no mycobacterial antibiotic-resistance genes have been isolated and characterized. We now report the isolation, cloning and sequencing of a genetic region responsible for resistance to sulphonamides in M. fortuitum. This region also contains an open reading frame homologous to one present in Tn16964 (member of the Tn21 family) which encodes a site-specific integrase5,6. The mycobacterial resistance element is flanked by repeated sequences of 880 base pairs similar to the insertion elements of the IS6 family found in Gram+ and Gram- bacteria. The insertion element is shown to transpose to different sites in the chromosome of a related fast-growing species, M. smegmatis. The characterization of this element should permit transposon mutagenesis in the analysis of mycobacterial virulence and related problems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Udou, T., Mizuguchi, Y. & Yamada, T. Am. Rev. resp. Dis. 133, 653–657 (1986).

    CAS  PubMed  Google Scholar 

  2. Wallace, R. J. Jr, et al. Am. Rev. resp. Dis. 132, 409–416 (1985).

    CAS  PubMed  Google Scholar 

  3. Udou, T., Mizuguchi, Y. & Wallace, R. J. Jr, Am. Rev. resp. Dis. 136, 338–343 (1987).

    CAS  Article  Google Scholar 

  4. Wohlleben, W. et al. Molec. gen. Genet. 217, 202–208 (1989).

    CAS  Article  Google Scholar 

  5. Martinez, E. & de la Cruz, F. Molec. Gen. Genet. 211, 320–325 (1988).

    CAS  Article  Google Scholar 

  6. Sundström, L., Radström, P., Swedberg, G. & Sköld, O. Molec. Gen. Genet. 213, 191–201 (1988).

    Article  Google Scholar 

  7. Trieu-Cuot, P. & Courvalin, P. Gene 30, 113–120 (1984).

    CAS  Article  Google Scholar 

  8. Murphy, E. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 269–288 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  9. Galas, J. & Chandler, M. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 109–162 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  10. Thole, J. E. R. et al. Infect. Immunity 55, 1466–1475 (1987).

    CAS  Google Scholar 

  11. Rauzier, J., Moniz-Pereira, J. & Gicquel-Sanzey, B. Gene 71, 315–321 (1988).

    CAS  Article  Google Scholar 

  12. Gicquel-Sanzey, B., Moniz-Pereira, J., Gheorghiu, M. & Rauzier, J. Acta Leprol. 7, 208–211 (1989).

    PubMed  Google Scholar 

  13. Ouellette, M., Bissonnette, L. & Roy, P. H. Proc. natn. Acad. Sci. U.S.A. 84, 7378–7382 (1987).

    ADS  CAS  Article  Google Scholar 

  14. Jacobs, W. R. Jr, Tuckman, M. & Bloom, B. R. Nature 327, 532–535 (1987).

    ADS  CAS  Article  Google Scholar 

  15. Snapper, S. B. et al. Proc. natn. Acad. Sci., U.S.A. 85, 6987–6991 (1988).

    ADS  CAS  Article  Google Scholar 

  16. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  17. Kagan, S. A., thesis, Univ. Wisconsin (1981).

  18. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    ADS  CAS  Article  Google Scholar 

  19. Deleclus, A., Bourgouin, C., Klier, A. & Rapoport, G. Plasmids 217, 71–78 (1989).

    Article  Google Scholar 

  20. Mollet, B., Iida, S., Shephered, J. & Arber, W. Nucleic Acids Res. 11, 6319–6330 (1983).

    CAS  Article  Google Scholar 

  21. Polzin, K. M. & Shimizu-Kadota, M. J. Bact. 169, 5481–5488 (1987).

    CAS  Article  Google Scholar 

  22. Barberis-Maino, L., Berger-Bächi, B., Weber, H., Beck, W. D. & Kayser, F. H. Gene 59, 107–113 (1987).

    CAS  Article  Google Scholar 

  23. Saurin, W. & Marlière, P. C. r. hebd. Séanc. Acad. Sci., Paris 13, 541–546 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, C., Timm, J., Rauzier, J. et al. Transposition of an antibiotic resistance element in mycobacteria. Nature 345, 739–743 (1990).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing