Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity

Abstract

THE facilitated glucose transporters comprise a structurally related family of proteins predicted to have 12 membrane-spanning domains, with the amino terminus, a relatively large middle loop and the carboxy-terminus all oriented towards the cytoplasm1–10. An alternating conformation model has been proposed to explain the mechanism of facilitated glucose transport11–17. To understand the structure-function relationships, especially the role of the intracellular C-terminal domain, we have modified the rabbit equivalent of the erythroid-type transporter, GLUT1 (réf. 18), using complementary DNA to code for a deletion mutant that lacks most (37 out of 42 amino acids) of the intracellular C-terminal domain. This deletion mutant is expressed at the cell surface of Chinese hamster ovary (CHO) cells, but is functionally inactive, probably because it has lost its capacity to alternate in conformation and so is locked into an inward-facing form.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mueckler, M. et al. Science 229, 941–945 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Birnbaum, M., Haspel, H. C. & Rosen, O. M. Proc. natn. Acad. Sci. U.S.A. 83, 5784–5788 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Asano, T. et al. Biochem. biophys. Res. Commun. 154, 1204–1211 (1988).

    Article  CAS  Google Scholar 

  4. Fukumoto, H. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5434–5438 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Thorens, B., Sarkar, H. K., Kaback, H. R. & Lodish, H. F. Cell 55, 281–290 (1988).

    Article  CAS  Google Scholar 

  6. James, D. E., Strube, M. & Mueckler, M. Nature 338, 83–87 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Birnbaum, M. J. Cell 57, 305–315 (1989).

    Article  CAS  Google Scholar 

  8. Fukumoto, H. et al. J. biol. Chem. 264, 7776–7779 (1989).

    CAS  PubMed  Google Scholar 

  9. Charron, M. J., Brosius, F. C., Alper, S. L. & Lodish, H. F. Proc. natn. Acad. Sci. U.S.A. 86, 2535–2539 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Kaestner, K. H. et al. Proc. natn. Acad. Sci. U.S.A. 86, 3150–3154 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Vidaver, G. A. J. theor. Biol. 10, 301–306 (1966).

    Article  CAS  Google Scholar 

  12. Krupka, R. M. Biochemistry 10, 1143–1153 (1971).

    Article  CAS  Google Scholar 

  13. Barnett, J. E. G., Holman, G. D., Chalkley, R. A. & Munday, K. A. Biochem. J. 145, 417–429 (1975).

    Article  CAS  Google Scholar 

  14. Basketter, D. A. & Widdas, W. F. J. Physiol., Lond. 278, 389–401 (1978).

    Article  CAS  Google Scholar 

  15. Baldwin, J. M., Lienhard, G. E. & Baldwin, S. A. Biochim. biophys. Acta 599, 699–714 (1980).

    Article  CAS  Google Scholar 

  16. Gorga, F. R. & Lienhard, G. E. Biochemistry 20, 5108–5133 (1981).

    Article  CAS  Google Scholar 

  17. Holman, G. D. & Rees, W. D. Biochim. biophys. Acta 897, 395–405 (1987).

    Article  CAS  Google Scholar 

  18. Pilch, P. F. Endocrinology 126, 3–5 (1990).

    Article  CAS  Google Scholar 

  19. Oka, Y. et al. J. biol. Chem. 263, 13432–13439 (1988).

    CAS  PubMed  Google Scholar 

  20. Asano, T. et al. J. biol. Chem. 264, 3416–3420 (1989).

    CAS  PubMed  Google Scholar 

  21. Calderhead, D. M. & Lienhard, G. E. J. biol. Chem. 263, 12171–12174 (1988).

    CAS  PubMed  Google Scholar 

  22. Holman, G. D. Biochem. Soc. Trans. 17, 438–440 (1989).

    Article  CAS  Google Scholar 

  23. Baker, G. F. & Widdas, W. F. J. Physiol., Lond. 231, 143–165 (1973).

    Article  CAS  Google Scholar 

  24. Cairns, M. T. et al. Biochim. Biophys. Acta 905, 295–310 (1987).

    Article  CAS  Google Scholar 

  25. Clark, A. E. & Holman, G. D. Biochem. J. (in the press).

  26. Higgins, C. Nature 341, 103 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, Y., Asano, T., Shibasaki, Y. et al. C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity. Nature 345, 550–553 (1990). https://doi.org/10.1038/345550a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345550a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing