Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene


MICE homozygous for the recessive mutation osteopetrosis (op) on chromosome 3 have a restricted capacity for bone remodelling, and are severely deficient in mature macrophages and osteoclasts1–3. Both cell populations originate from a common haemopoietic progenitor. As op/op mice are not cured by transplants of normal bone marrow cells4, the defects in op/op mice may be associated with an abnormal haematopoietic microenvironment rather than with an intrinsic defect in haematopoietic progenitors. To investigate the molecular and biochemical basis of the defects caused by the op mutation, we established primary fibroblast cell lines from op/op mice and tested the ability of these cell lines to support the proliferation of macrophage progenitors. We show that op/op fibroblasts are defective in production of functional macrophage colony-stimulating factor (M-CSF), although its messenger RNA (Csfm mRNA) is present at normal levels. This defect in M-CSF production and the recent mapping of the Csfm structural gene near op on chromosome 3 (refs 5,6) suggest that op is a mutation within the Csfm gene itself. We have sequenced Csfm complementary DNA prepared from op/op fibroblasts and found a single base pair insertion in the coding region of the Csfm gene that generates a stop codon 21 base pairs downstream. Thus, the op mutation is within the Csfm coding region and we conclude that the pathological changes in this mutant result from the absence of M-CSF.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Marks Jr. S. C. & Lane, P. W. J. Heredity 67, 11–18 (1976).

    Article  Google Scholar 

  2. 2

    Wiktor-Jedrzejczak, W., Ahmed, A., Szczylik, C. & Skelly, R. R. J. exp. Med. 156, 1516–1527 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Shultz, L. D. & Sidman, C. A. Rev. Immun. 5, 367–403 (1987).

    CAS  Article  Google Scholar 

  4. 4

    Marks Jr. S. C., Seifert, M. F. & McGuire, J. L. Metab. Bone Dis. & Rel. Res. 5, 183–186 (1984).

    Article  Google Scholar 

  5. 5

    Buchberg, A. M., Jenkins, A. A. & Copeland, N. G. Genomics 5, 363–367 (1989).

    CAS  Article  Google Scholar 

  6. 6

    Gisselbrecht, S. et al. Blood 73, 1742–1746 (1989).

    CAS  PubMed  Google Scholar 

  7. 7

    Sachs, L. Science 238, 1374–1379 (1987).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Metcalf, D. Nature 339, 27–30 (1989).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Stanley, E. R. et al. J. cell. Biochem. 21, 151–159 (1983).

    CAS  Article  Google Scholar 

  10. 10

    Saiki, R. K. et al. Science 239, 487–491 (1988).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Rajavashisth, T. B. et al. Proc. natn. Acad. Sci. U.S.A. 84, 1157–1161 (1987).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ladner, M. B. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6706–6710 (1988).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ladner, M. B. et al. EMBO J. 6, 2693–2698 (1987).

    CAS  Article  Google Scholar 

  14. 14

    Takahashi, M. et al. Biochem. biophys. Res. Commun. 161, 892–901 (1989).

    CAS  Article  Google Scholar 

  15. 15

    Ogawa, M. et al. EMBO J. 7, 1337–1343 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Nishikawa, S. I., Ogawa M., Nishikawa, S., Kunisada, T. & Kodama, H. Eur. J. Immun. 18, 1767–1771 (1988).

    CAS  Article  Google Scholar 

  17. 17

    Regenstreif, L. J. & Rossant, J. dev Biol. 133, 284–294 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Polland, J. W. et al. Nature 330, 484–486 (1987).

    ADS  Article  Google Scholar 

  19. 19

    Kincade, P. W., Ralph, P. & Moore, M. A. S. J. exp. Med. 143, 1265–1270 (1976).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoshida, H., Hayashi, SI., Kunisada, T. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing