Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc

Abstract

DETERMINATION of the dynamical structure of neural circuits—the general principles of how neural activity varies with time and manipulates information—is a prerequisite to understanding their computational function1. Rhythmically active or oscillating neural circuits are particularly interesting dynamical structures, as rhythms and oscillations are a prominent feature of mammalian central nervous system electrophysiology. Coherent oscillations by networks of interneurons are observed in the vertebrate olfactory system2,3 and have recently been described in mammalian visual cortex4–6. These interneuronal networks display oscillations in local field potential (LFP) and probability of producing action potentials that are highly correlated between subcircuits sharing the same stimulus features. Much less is known about the existence and importance of network oscillations in the higher centres of invertebrates7. Here we report that a network of olfactory inter-neurons in the cerebral ganglion of the terrestrial mollusc Limax maximus also displays coherent oscillations in LFP which are modified by odour input. This dynamical structure could be central to the odour recognition and odour learning ability of Limax8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tank, D. W. Semin. Neurosci. 1, 67–79 (1989).

    Google Scholar 

  2. Freeman, W. J. Mass Action in the Nervous System (Academic, New York, 1975).

    Google Scholar 

  3. Shepherd, G. M. in Taste, Olfaction and the Central Nervous System (ed. Pfaff, D. W.) 307–332 (Rockefeller University Press, New York, 1985).

    Google Scholar 

  4. Gray, C. M. & Singer, W. Proc. natn. Acad. Sci. U.S.A. 86, 1698–1702 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Nature 338, 334–337 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Eckhorn, R. et al. Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  Google Scholar 

  7. Bullock, T. H. & Basar, E. Brain Res. Rev. 13, 57–75 (1988).

    Article  Google Scholar 

  8. Gelperin, A., Tank, D. W. & Tesauro, G. in Neural Models of Plasticity (eds Byrne, J. H. & Berry, W. O.) 133–159 (Academic, New York, 1989).

    Book  Google Scholar 

  9. Sahley, C. L. in Connectionist Modeling and Brain Function: The Developing Interface (eds Hanson, S. & Olson, C.) 36–73 (MIT, Cambridge, 1990).

    Google Scholar 

  10. McCarragher, G. & Chase, R. J. Neurobiol. 16, 69–74 (1985).

    Article  Google Scholar 

  11. Zs.-Nagy, I. & Sakharov, D. A. Tissue & Cell 2, 399–411 (1970).

    Article  CAS  Google Scholar 

  12. Chase, R. & Tolloczko, B. J. comp. Neurol. 283, 143–152 (1989).

    Article  CAS  Google Scholar 

  13. Veratti, E. Mem. Real. Inst. Lomb. Sci. Lett. 18, 163–179 (1900).

    Google Scholar 

  14. Egan, M. E. & Gelperin, A. J. mollusc. Stud. 47, 80–88 (1981).

    Article  Google Scholar 

  15. Hopfield, J. F. & Gelperin, A. Behav. Neurosci. 103, 329–333 (1989).

    Article  Google Scholar 

  16. Freeman, W. J. Biol. Cybern. 35, 221–234 (1979).

    Article  CAS  Google Scholar 

  17. Adrian, E. D. J. Physiol. 100, 459–473 (1942).

    Article  CAS  Google Scholar 

  18. Adrian, E. D. Electroenceph. clin. Neurophysiol. 2, 377–388 (1950).

    Article  CAS  Google Scholar 

  19. Adrian, E. D. Br. med. Bull. 6, 330–333 (1950).

    Article  CAS  Google Scholar 

  20. Freeman, W. J. & Skarda, C. A. Brain Res. Rev. 10, 147–175 (1985).

    Article  Google Scholar 

  21. Gray, C. M., Freeman, W. J. & Skinner, J. E. Behav. Neurosci. 100, 585–596 (1986).

    Article  CAS  Google Scholar 

  22. Freeman, W. J. & Viana Di Prisco, G. Behav. Neurosci. 100, 753–763 (1986).

    Article  CAS  Google Scholar 

  23. Baird, B. Physica 22D, 150–175 (1986).

    ADS  Google Scholar 

  24. Li, Z. & Hopfield, J. J. Biol. Cybern. 61, 379–392 (1989).

    Article  CAS  Google Scholar 

  25. Freeman, W. J., Yao, Y. & Burke, B. Neur. Net. 1, 277–288 (1988).

    Article  Google Scholar 

  26. Wilson, M. A. & Bower, J. M. in Neural Information Processing Systems (ed. Anderson, D. Z.) 114–126 (American Institute of Physics, New York, 1988).

    Google Scholar 

  27. Lynch, G., Granger, R., Baudry, M. & Larson, J. in Neural Connections, Mental Computation (eds Nadel, L., Cooper, L., Culicover, P. & Harnish, R. M.) 247–289 (MIT Press, Cambridge, 1988).

    Google Scholar 

  28. Haberly, L. B. Chem. Senses 10, 219–238 (1985).

    Article  Google Scholar 

  29. Hopfield, J. J. in Computer Simulation in Brain Science (ed. Cotterill, R. M. J.) 405–415 (Cambridge University Press, New York, 1988).

    Book  Google Scholar 

  30. Homberg, U., Christensen, T. A. & Hildebrand, J. G. A. Rev. Ent. 34, 477–501 (1989).

    Article  CAS  Google Scholar 

  31. Menzel, R. in Perspectives In Neural Systems and Behavior (eds Carew, T. & Kelley, D.) 249–266 (A. R. Liss, New York, 1989).

    Google Scholar 

  32. Rhines, L. thesis, Princeton Univ. (1989).

  33. Osborne, N. N. & Cottrell, G. A. Z. Zellforsch. mitrosk. Anat. 112, 15–30 (1971).

    Article  CAS  Google Scholar 

  34. Yamane, T., Gelperin, A. & Delaney, K. Soc. Neurosci. Abstr. 12, 862 (1986).

    Google Scholar 

  35. Kandel, E. R. & Schwartz, J. H. Science 218, 433–443 (1982).

    Article  ADS  CAS  Google Scholar 

  36. Sweatt, J. D. & Kandel, E. R. Nature 339, 51–54 (1989).

    Article  ADS  CAS  Google Scholar 

  37. Crow, T. Trends Neurosci. 11, 136–142 (1988).

    Article  CAS  Google Scholar 

  38. Eskin, A., Garcia, K. S. & Byrne, J. H. Proc. natn. Acad. Sci. U.S.A. 86, 2458–2462 (1989).

    Article  ADS  CAS  Google Scholar 

  39. Grover, L. M., Farley, J. & Auerbach, S. B. Brain Res. Bull. 22, 363–372 (1989).

    Article  CAS  Google Scholar 

  40. Yamane, T. & Gelperin, A. Cell. mol. Neurobiol. 7, 291–301 (1987).

    Article  CAS  Google Scholar 

  41. Yamane, T., Oestreicher, A. B. & Gelperin, A. Cell. mol. Neurobiol. 9, 447–459 (1989).

    Article  CAS  Google Scholar 

  42. Macrides, F., Davis, B. J., Young, W. M., Nadi, N. S. & Margolis, F. L. J. comp. Neurol. 203, 495–514 (1981).

    Article  CAS  Google Scholar 

  43. Shipley, M. T., Halloran, F. J. & de la Torre, J. Brain Res. 329, 294–299 (1985).

    Article  CAS  Google Scholar 

  44. McLean, J. H. & Shipley, M. T. J. Neurosci. 7, 3016–3028 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelperin, A., Tank, D. Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345, 437–440 (1990). https://doi.org/10.1038/345437a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345437a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing