Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals

Abstract

Uranium–thorium ages obtained by mass spectrometry from corals raised off the island of Barbados confirm the high precision of this technique over at least the past 30,000 years. Comparison of the U–Th ages with 14C ages obtained on the Holocene samples shows that the U–Th ages are accurate, because they accord with the dendrochronological calibration. Before 9,000 yr BP the 14C ages are systematically younger than the U–Th ages, with a maximum difference of 3,500 yr at 20,000 yrBP . The U–Th technique thus provides a way of calibrating the radiocarbon timescale beyond the range of dendrochronological calibration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Fairbanks, R. G. Nature 342, 637–642 (1989).

    ADS  Article  Google Scholar 

  2. 2

    Duplessy, J. C. et al. Nature 320, 350–352 (1986).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bard, E. et al. Nature 328, 791–794 (1987).

    ADS  Article  Google Scholar 

  4. 4

    Broecker, W. S. et al. Nature 333, 156–158 (1988).

    ADS  Article  Google Scholar 

  5. 5

    De Vries, H. L. Proc. Koninkl. Ned. Akad. Wetenshap. B61, 94–102 (1958).

    CAS  Google Scholar 

  6. 6

    Stuiver, M. & Polach, H. A. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  7. 7

    Stuiver, M. & Kra, R. Radiocarbon 28, 805–1030 (1986).

    CAS  Article  Google Scholar 

  8. 8

    Lal, D. Geophys. Monogr. Ser. 32, 221–233 (1985).

    Google Scholar 

  9. 9

    Beer, J. et al. Nature 331, 675–679 (1988).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  10. 10

    Andree, M. et al. Clim. Dyn. 1, 53–62 (1986).

    Article  Google Scholar 

  11. 11

    Peng, T. H. Radiocarbon (in the press).

  12. 12

    Suess, H. in Proc. Conf. Problems Related to Interplanetary Matter NAS-NSF Publ. 845, Nucl. Sci. Ser. Vol. 33, 90–95 (NAS-NSF, La Jolla, 1961).

  13. 13

    Stuiver, M. J. geophys. Res. 66, 273–276 (1961).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Stuiver, M. & Quay, P. D. Science 207, 11–19 (1980).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Stuiver, M. in Late Cenozoic Glacial Ages (ed. Turekian, K. K.) 57–70 (Yale Univ. Press, New Haven, 1970).

    Google Scholar 

  16. 16

    Tauber, H. in Nobel Symp. 12th, Radiocarbon Variations and Absolute Chronology (ed. Olsson, I. U.) (Wiley, New York, 1970).

    Google Scholar 

  17. 17

    Peng, T. H., Goddard, J. G. & Broecker, W. S. Quat. Res. 9, 319–329 (1978).

    CAS  Article  Google Scholar 

  18. 18

    Stuiver, M. Nature 273, 271–274 (1978).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Vogel, J. C. Radiocarbon 25, 213–218 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Hammer, C. U., Clausen, H. B. & Tauber, H. Radiocarbon 28, 284–291 (1986).

    CAS  Article  Google Scholar 

  21. 21

    Chen, J. H., Edwards, R. L. & Wasserburg, G. J. Earth planet. Sci. Lett. 80, 241–251 (1986).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Edwards, R. L. thesis, California Inst. Technol. (1988).

  23. 23

    Edwards, R. L., Chen, J. H. & Wasserburg, G. J. Earth planet. Sci. Lett. 81, 175–192 (1987).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Edwards, R. L., Taylor, F. W. & Wasserburg, G. J. Earth planet Sci. Lett. 90, 371–381 (1988).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Li, W. X. et al. Nature 337, 534–536 (1989).

    ADS  Article  Google Scholar 

  26. 26

    Dodge, R. E., Fairbanks, R. G., Benninger, L. K. & Maurrasse, F. Science 219, 1423–1425 (1983).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Bard, E. Paleoceanography 3, 635–645 (1988).

    ADS  Article  Google Scholar 

  28. 28

    Stuiver, M., Pearson, G. W. & Brazunias, T. Radiocarbon 28, 980–1021 (1986).

    CAS  Article  Google Scholar 

  29. 29

    Cato, I. Boreas 14, 117–122 (1985).

    Article  Google Scholar 

  30. 30

    Stuiver, M., Kromer, B., Becker, B. & Ferguson, C. W. Radiocarbon 28, 979–979 (1986).

    Google Scholar 

  31. 31

    Becker, B. & Kromer, B. Radiocarbon 28, 961–967 (1986).

    CAS  Article  Google Scholar 

  32. 32

    Oeschger, H. et al. Radiocarbon 22, 299–310 (1980).

    CAS  Article  Google Scholar 

  33. 33

    Broecker, W. S. & Kaufman, A. Geol. Soc. Am. Bull. 76, 537–566 (1965).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Ku, T. L., Ivanovitch, M. & Luo, S. Quat. Res. (in the press).

  35. 35

    Libby, W. F. Radiocarbon Dating (Univ. Chicago Press, 1952).

    Google Scholar 

  36. 36

    Delmas, R. J., Ascencio, J. M. & Legrand, M. Nature 284, 155–157 (1980).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Berner, W., Oeschger, H. & Stauffer, B. Radiocarbon 22, 227–235 (1980).

    CAS  Article  Google Scholar 

  38. 38

    Barnola, J. M., Raynaud, D., Korotkevitch, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Siegenthaler, U., Heimann, M. & Oeschger, H. Radiocarbon 22, 177–191 (1980).

    CAS  Article  Google Scholar 

  40. 40

    Keir, R. S. Earth planet Sci. Lett. 64, 445–456 (1983).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Lal, D. & Revelle, R. Nature 308, 344–346 (1984).

    ADS  CAS  Article  Google Scholar 

  42. 42

    Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. Tellus 27, 168–192 (1975).

    ADS  CAS  Article  Google Scholar 

  43. 43

    Shackleton, N. J. et al. Nature 335, 708–711 (1988).

    ADS  Article  Google Scholar 

  44. 44

    Broecker, W. S. et al. Paleoceanography 3, 659–669 (1988).

    ADS  Article  Google Scholar 

  45. 45

    Raisbeck, G. M. et al. Nature 326, 273–277 (1987).

    ADS  Article  Google Scholar 

  46. 46

    Yiou, F., Raisbeck, G. M., Bourles, D., Lorius C. & Barkov, N. I. Nature 316, 616–617 (1985).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Thellier, E. & Thellier, O. C. r. hebd. Seanc. Acad. Sci. Paris 212, 281–283 (1941).

    Google Scholar 

  48. 48

    McElhinny, M. W. & Senanayaka, W. E. J. Geomagn. Geoelec., Kyoto 34, 39–51 (1982).

    ADS  Article  Google Scholar 

  49. 49

    Tauxe, L. & Valet, J. P. Phys. Earth planet. Inter. 56, 59–68 (1989).

    ADS  Article  Google Scholar 

  50. 50

    Lal, D. in Proc. 45th Conf. Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia, 216–233 (Soc. Italiana di Fisica, Bologna, 1988).

    Google Scholar 

  51. 51

    Houtermans, J. C., Suess, H. E. & Oeschger, H. J. geophys. Res. 78, 1897–1908 (1973).

    ADS  CAS  Article  Google Scholar 

  52. 52

    Gillot, P. Y. & Cornette, Y. Chem. Geol. 59, 202–222 (1986).

    Google Scholar 

  53. 53

    Valladas, H. & Valladas, G. Coll. Int. CNRS, Habitats du Paléolithique Supérieur (Roanne-Villerest, in the press).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bard, E., Hamelin, B., Fairbanks, R. et al. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, 405–410 (1990). https://doi.org/10.1038/345405a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links