Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Migration of myoblasts across basal lamina during skeletal muscle development

Abstract

BASAL lamina is a sheet of extracellular matrix that separates cells into topologically distinct groups during morphogenesis and is thought to form a barrier to cell migration. We have examined whether, during normal muscle development, myoblasts—mononucleate muscle precursor cells1—can cross the basal lamina that surrounds each multinucleate muscle fibre2. We marked myoblasts in vivo by injecting replication-defective retroviral vectors encoding LacZ into muscle tissue and analysed the fate of their progeny by the expression of β-galactosidase3,4. A dual labelling method with broad application to retroviral lineage-marking studies was developed to ensure that most clusters of labelled cells were clones derived from a single precursor cell. Most of the myoblasts that were infected at a late stage of rat hindlimb development, when each fibre with its satellite myoblasts is individually encased in a basal lamina sheath2,5,6, gave rise to clones that contributed to several labelled fibres. Our results show that myoblasts from healthy fibres migrate across basal lamina during normal development and could contribute to the repair of fibres damaged by injury or disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mauro, A. J. biophys. biochem. Cytol. 9, 493–494 (1961).

    Article  CAS  Google Scholar 

  2. Kelly, A. M. & Zacks, S. I. J. Cell Biol. 42, 135–153 (1969).

    Article  CAS  Google Scholar 

  3. Price, J., Turner, D. & Cepko, C. Proc. natn. Acad. Sci. U.S.A. 84, 156–160 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Bonnerot, C., Rocancourt, D., Briand, P., Grimber, G. & Nicolas, J. F. Proc. natn. Acad. Sci. U.S.A. 84, 6795–6799 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Enesco, M. & Puddy, D. Am. J. Anat. 114, 235–244 (1964).

    Article  CAS  Google Scholar 

  6. Ontell, M. & Kozeka, K. Am. J. Anat. 171, 133–148 (1984).

    Article  CAS  Google Scholar 

  7. Chevallier, A., Kieny, M. & Mauger, A. J. Embryol. exp. Morphol. 41, 245–258 (1977).

    CAS  PubMed  Google Scholar 

  8. Christ, B., Jacob, H. J. & Jacob, M. Anat. Embryol. Berl. 150, 171–186 (1977).

    Article  CAS  Google Scholar 

  9. Varmus, H. E., Padgett, T., Heasley, S., Simon, G. & Bishop, J. M. Cell 11, 307–319 (1977).

    Article  CAS  Google Scholar 

  10. Ralston, E. & Hall, Z. W. Science 244, 1066–1069 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Hughes, S. M. & Blau, H. M. in The Dynamic State of Muscle Fibres, (ed. Pette, D.) (Walter de Gruyter & Co., Berlin-New York, in the press).

  12. Pavlath, G. K., Rich, K., Webster, S. G. & Blau, H. M. Nature 337, 570–573 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Ontell, M. Anat. Rec. 189, 669–690 (1977).

    Article  CAS  Google Scholar 

  14. Kelly, A. M. Anat. Rec. 190, 891–903 (1978).

    Article  CAS  Google Scholar 

  15. Schultz, E., Jaryszak, D. L., Gibson, M. C. & Albright, D. J. J. Muscle Res. Cell Motil. 7, 361–367 (1986).

    Article  CAS  Google Scholar 

  16. Watt, D. J., Morgan, J. E., Clifford, M. A. & Partridge, T. A. Anat. Embryol. Berl. 175, 527–536 (1987).

    Article  CAS  Google Scholar 

  17. Lipton, B. H. & Schultz, E. Science 205, 1292–1294 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Partridge, T. A., Morgan, J. E., Coulton, G. R., Hoffman, E. P. & Kunkel, L. M. Nature 337, 176–179 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Anderson, A. O. & Anderson, N. D. Immunology 31, 731–748 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Warfel, K. A. & Hull, M. T. Anat. Rec. 208, 349–355 (1984).

    Article  CAS  Google Scholar 

  21. Nakajima, M., Irimura, T., Di, F. D., Di, F. N. & Nicolson, G. L. Science 220, 611–613 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Venkatasubramanian, K. & Solursh, M. Devl Biol. 104, 428–433 (1984).

    Article  CAS  Google Scholar 

  23. Ocalan, M., Goodman, S. L., Kuhl, U., Hauschka, S. D. & von der Mark, K. Devl Biol. 125, 158–167 (1988).

    Article  CAS  Google Scholar 

  24. Ontell, M. & Dunn, R. F. Am. J. Anat. 152, 539–555 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, S., Blau, H. Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345, 350–353 (1990). https://doi.org/10.1038/345350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing