Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin

Abstract

CONTRARY to the traditional view that microtubules pull chromosomes polewards during the anaphase stage of meiotic and mitotic cell divisions, new evidence suggests that the chromosome movements are driven by a motor located at the kinetochore1–3. The process of chromosome segregation involves proper arrangement of kinetochores for spindle attachment, followed by spindle attachment and chromosome movement. Mechanisms in Drosophila for chromosome segregation in meiosis differ in males and females4, implying the action of different gene products in the two sexes. A product encoded at the claret locus in Drosophila is required for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo. Here we show that the predicted amino-acid sequence of this product is related to the heavy chain of kinesin5. The conserved region corresponds to the kinesin motor domain and includes the ATP-binding site and a region that can bind microtubules. A second region contains a leucine repeat motif which may mediate protein–subunit interactions necessary for attachment of chromosomes to the spindle. The mutant phenotype of chromosome nondisjunction and loss, and its similarity to the kinesin ATP-binding domain, suggest that the product encoded at claret not only stabilizes chromosome attachments to the spindle, but may also be a motor that drives chromosome segregation in female meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. J. Cell Biol. 104, 9–18 (1988).

    Article  Google Scholar 

  2. Nicklas, R. B. J. Cell Biol. 109, 2245–2255 (1989).

    Article  CAS  Google Scholar 

  3. Rieder, C. L., Alexander, S. P. & Rupp, G. J. Cell Biol. 110, 81–95 (1990).

    Article  CAS  Google Scholar 

  4. Cooper, K. W. Proc. natn. Acad. Sci. U.S.A. 52, 1248–1255 (1964).

    Article  ADS  CAS  Google Scholar 

  5. Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. Cell 56, 879–889 (1989).

    Article  CAS  Google Scholar 

  6. Landschulz, W. H., Johnson, P. F. & McKnight S. L. Science 240, 1759–1764 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Yamamoto, A. H., Komma, D. J., Shaffer, C. D., Pirrotta, V. & Endow, S. A. EMBO J. 8, 3543–3552 (1989).

    Article  CAS  Google Scholar 

  8. Davis, D. G. Genetics 61, 577–594 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wickens, M. & Stephenson, P. Science 226, 1045–1051 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Cavener, D. R. Nucleic Acids Res. 15, 1353–1361 (1987).

    Article  CAS  Google Scholar 

  11. Henikoff, S. & Wallace, J. C. Nucleic Acids Res. 16, 6191–6204 (1988).

    Article  CAS  Google Scholar 

  12. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  13. Yang, J. T., Saxton, W. M. & Goldstein, L. S. B. Proc. natn. Acad. Sci. U.S.A. 85, 1864–1868 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Hirokawa, N. et al. Cell 56, 867–878 (1989).

    Article  CAS  Google Scholar 

  15. Scholey, J. M., Heuser, J., Yang, J. T. & Goldstein, L. S. B. Nature 338, 355–357 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Hodges, R. S., Sodek, J., Smillie, L. B. & Jurasek, L. Cold Spring Harb. Symp. Quant. Biol. 37, 299–310 (1982).

    Article  Google Scholar 

  17. Richardson, J. S. & Richardson, D. C. in Prediction of Protein Structure and the Principles of Protein Conformation (ed. Fasman, G. D.) 1–98 (Plenum, New York, 1989).

    Book  Google Scholar 

  18. O'Shea, E. K., Rutkowski, R. & Kim, P. S. Science 243, 538–542 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Mitchison, T. J. & Kirschner, M. W. J. Cell Biol. 101, 766–777 (1985).

    Article  CAS  Google Scholar 

  20. Meluh, P. B. & Rose, M. D. Cell 60, 1029–1041 (1990).

    Article  CAS  Google Scholar 

  21. Enos, A. P. & Morris, N. R. Cell 60, 1019–1027 (1990).

    Article  CAS  Google Scholar 

  22. Baker, B. S. Genetics 80, 267–296 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sturtevant, A. H. Z. Wiss. Zool. 135, 323–356 (1929).

    Google Scholar 

  24. Studier, F. W., Rosenberg, A. H. & Dunn, J. J. Meth. Enzym. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endow, S., Henikoff, S. & Soler-Niedziela, L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345, 81–83 (1990). https://doi.org/10.1038/345081a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345081a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing