Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Red Queen hypothesis supported by parasitism in sexual and clonal fish

Abstract

THE Red Queen hypothesis for the maintenance of biparental sexual reproduction suggests that, for species locked in revolutionary struggles with biological enemies, the production of variable progeny compensates for the genetic or ecological disadvantages of sex1–7. The advantage of sex and recombination under this hypothesis stems from the production of rare phenotypes, which are expected to be more likely to escape infection or predation by coevolved biological enemies. Like many evolutionary hypotheses, the Red Queen hypothesis is difficult to test directly, but its assumptions and predictions can be evaluated7–18. The most critical assumption is that biological enemies will disproportionately attack the most common phenotype19, 20. In this study of parasite loads of coexisting sexual and clonal fish, we find empirical support for this assumption.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levin, D. Am. Nat. 109, 437–451 (1975).

    Article  Google Scholar 

  2. Jaenike, J. Evol. Theory 3, 191–194 (1978).

    Google Scholar 

  3. Glesener, R. R. & Tilman, D. Am. Nat. 112, 659–673 (1978).

    Article  Google Scholar 

  4. Bremermann, H. J. J. theor. Biol. 87, 641–702 (1980).

    Article  MathSciNet  Google Scholar 

  5. Hamilton, W. D. Oikos 35, 282–290 (1980).

    Article  Google Scholar 

  6. Lloyd, D. G. in Evolutionary Biology Vol. 13 (eds Hecht, M. K., Steere, W. C. & Wallace, B.) 69–111 (Plenum, New York, 1980).

    Book  Google Scholar 

  7. Bell, G. The Masterpiece of Nature (University of California Press, Berkeley, 1982).

    Google Scholar 

  8. Antonovics, J. & Ellstrand, N. C. Evolution 38, 103–115 (1984).

    Article  Google Scholar 

  9. Ellstrand, N. C. & Antonovics, J. Evolution 39, 657–666 (1985).

    Article  Google Scholar 

  10. Schmitt, J. & Antonovics, J. Evolution 40, 830–836 (1986).

    Article  Google Scholar 

  11. Parker, M. A. Am. J. Bot. 74, 1758–1763 (1987).

    Article  Google Scholar 

  12. Burt, A. & Bell, G. Nature 326, 803–805 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Lively, C. M. Nature 328, 519–521 (1987).

    Article  ADS  Google Scholar 

  14. Kelley, S. E., Antonovics, J. & Schmitt, J. Nature 331, 714–716 (1988).

    Article  ADS  Google Scholar 

  15. Parker, M. A. Evolution 43, 540–547 (1989).

    Article  Google Scholar 

  16. Lively, C. M. Evolution 43, 1663–1671 (1989).

    Article  Google Scholar 

  17. Williams, G. C. Sex and Evolution (Princeton University Press, 1975).

    Google Scholar 

  18. Maynard Smith, J. The Evolution of Sex (Cambridge University Press, 1978).

    Google Scholar 

  19. Haldane, J. B. S. La Ricerca Scientifica (Suppl.) 19, 68–76 (1949).

    Google Scholar 

  20. Clarke, B. in Genetic Aspects of Host-Parasite Relationships Vol. 14 (eds Taylor, A. E. R. & Muller, R.) 87–103 (Blackwell Scientific, Oxford, 1976).

    Google Scholar 

  21. Schultz, R. J. Am. Nat. 103, 605–619 (1967).

    Article  Google Scholar 

  22. Vrijenhoek, R. C. Science 199, 549–552 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Moore, W. S. Copeia 1977, 213–223 (1977).

    Article  Google Scholar 

  24. Cheng, T. C. General Parasitology 2nd edn (Academic, Orlando, Florida, 1986).

    Google Scholar 

  25. Wakelin, D. in Ecology and Genetics of Host-Parasite Interactions (eds Rollinson, D. & Anderson, R. M.) 39–54 (Academic, London, 1985).

    Google Scholar 

  26. Vrijenhoek, R. C. in Speciation and its Consequences (eds Otte, D. & Endler, J. A.) 386–400 (Sinauer, Sunderland, Massachusetts, 1989).

    Google Scholar 

  27. Vrijenhoek, R. C. & Lerman, S. Evolution 36, 768–776 (1982).

    Article  Google Scholar 

  28. Apple, J. L. in Plant Disease Vol. 1 (eds Harsfall, J. G. & Cowling, E. B.) 79–101 (Academic, New York, 1977).

    Google Scholar 

  29. Freund, R. J. & Littell, R. C. SAS for Linear Models (SAS Institute, Cary, North Carolina, 1981).

    Google Scholar 

  30. Sokal, R. R. & Rohlf, F. J. Biometry 2nd edn (Freeman, San Francisco, 1981).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lively, C., Craddock, C. & Vrijenhoek, R. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344, 864–866 (1990). https://doi.org/10.1038/344864a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344864a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing