Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal

Abstract

RHIZOBIA are symbiotic bacteria that elicit the formation on leguminous plants of specialized organs, root nodules, in which they fix nitrogen1. In various Rhizobium species, such as R. leguminosarum and R. meliloti, common and host-specific nodullation (nod) genes have been identified which determine infection and nodulation of specific hosts1. Common nod ABC genes2–5 as well as host-specific nodH and nodQ genes4'6–8 were shown recently, using bioassays, to be involved in the production of extracellular Nod signals. Using R. meliloti strains overproducing symbiotic Nod factors, we have purified the major alfalfa-specific signal, NodRm-1, by gel permeation, ion exchange and C18 reverse-phase high performance liquid chromatography. From mass spec-trometry, nuclear magnetic resonance, 35S-labelling and chemical modification studies, NodRm-1 was shown to be a sulphated β-1,4-tetrasaccharide of D-glucosamine (Mr 1,102) in which three amino groups were acetylated and one was acylated with a C16 bis-unsaturated fatty acid. This purified Nod signal specifically elicited root hair deformation on the homologous host when added in nanomolar concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Long, S. R. Cell 56, 203–214 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. van Brussel, A. A. N. et al. J. Bact. 165, 517–522 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zaat, S. A. J., van Brussel, A. A. N., Tak, T., Pees, E. E. & Lugtenberg, B. J. J. J. Bact 169, 3388–3391 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Faucher, C. et al. J. Bact. 170, 5489–5499 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmidt, J., Wingender, R., John, M., Wieneke, U. & Schell, J. Proc. natn. Acad. Sci. U.S.A. 85, 8578–8582 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Banfalvi, Z. & Kondorosi, A. Plant molec. Biol. 13, 1–12 (1989).

    Article  CAS  Google Scholar 

  7. Faucher, C. et al. Molec. Plant-Microbe Interact. 2, 291–300 (1989).

    Article  Google Scholar 

  8. Faucher, C. et al. in Signal Molecules in Plant and Plant-Microbe Interactions (ed. Lugtenberg, B. J. J.) 379–386 (Springer–Verlag, Berlin/Heidelberg, 1989).

    Book  Google Scholar 

  9. Truchet, G., Michel, M. & Dénarié, J. Differentiation 16, 163–173 (1980).

    Article  CAS  Google Scholar 

  10. Finan, T. M. et al. Cell 40, 869–877 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Truchet, G. et al. Molec. gen. Genet. 219, 65–68 (1989).

    Article  CAS  Google Scholar 

  12. Debellé, F. et al. J. Bact. 168, 1075–1086 (1986).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cervantes, E. et al. Molec. Microb. 3, 745–755 (1989).

    Article  CAS  Google Scholar 

  14. Peters, N. K., Frost, J. W. & Long, S. R. Science 233, 977–980 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Mulligan, J. T. & Long, S. R. Genetics 122, 7–18 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Blumberg, K., Liniere, F., Pustilnik, L. & Bush, C. A. Analyt. Biochem. 119, 407–412 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Zeroni, M. & Hall, M. A. in Hormonal Regulation of Development I, Molecular Aspects (ed. MacMillan, J.) 511–586 (Springer-Verlag, Berlin/Heidelberg, 1980).

    Book  Google Scholar 

  18. Raetz, C. R. H. in Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology (ed. Neidhardt, F. C.) 498–503 (Am. Soc. Microbiol., Washington, 1987).

    Google Scholar 

  19. Darvill, A. G. & Albersheim, P. A. Rev. Pl. Physiol. 35, 243–298 (1984).

    Article  CAS  Google Scholar 

  20. Diaz, C. L., Melchers, L. S., Hooykaas, P. J. J., Lugtenberg, B. J. J. & Kijne, J. W. Nature 338, 579–581 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Lis, H. & Sharon, N. A. Rev. Biochem. 55, 35–67 (1986).

    Article  CAS  Google Scholar 

  22. Kijne, J. W., Diaz, C. L. & Lugtenberg, B. J. J. in Signal Molecules in Plant and Plant-Microbe Interactions (ed. Lugtenberg, B. J. J.) 351–358 (Springer, Berlin/Heidelberg, 1989).

    Book  Google Scholar 

  23. Vincent, J. M. A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook no. 15 (Blackwell Scientific Publications, Oxford, 1970).

    Google Scholar 

  24. Dell, A. et al. Carbohydr. Res. 179, 7–19 (1988).

    Article  CAS  Google Scholar 

  25. Dell, A. Adv. Carbohydr. Chem. Biochem. 45, 19–72 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Demary, M., Puzo, G. & Asselineau, J. Nouv. J. Chimie 2, 373–378 (1977).

    Google Scholar 

  27. Promé, J. C., Aurelle, H., Couderc, F. & Savagnac, A. Rapid Commun. Mass Spectrom. 1, 80–82 (1987).

    Article  ADS  Google Scholar 

  28. Finne, J., Krusius, T. & Rauvala, H. Carbohydr. Res. 80, 336–339 (1980).

    Article  CAS  Google Scholar 

  29. Boyd, J., Porteous, R. & Soffe, N. Carbohydr. Res. 139, 35–46 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Strecker, G., Wieruszeski, J. M., Martel, C. & Montreuil, J. Carbohydr. Res. 185, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerouge, P., Roche, P., Faucher, C. et al. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784 (1990). https://doi.org/10.1038/344781a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344781a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing