Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series

Abstract

An approach is presented for making short-term predictions about the trajectories of chaotic dynamical systems. The method is applied to data on measles, chickenpox, and marine phytoplankton populations, to show how apparent noise associated with deterministic chaos can be distinguished from sampling error and other sources of externally induced environmental noise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lorenz, E. N. J. atmos. Sci. 26, 636–646 (1969).

    ADS  Article  Google Scholar 

  2. 2

    Tong, H. & Lim, K. S. Jl. R. statist. Soc. 42, 245–292 (1980).

    Google Scholar 

  3. 3

    Farmer, J. D. & Sidorowich, J. J. Phys. Rev. Lett. 62, 845–848 (1987).

    ADS  Article  Google Scholar 

  4. 4

    Priestly, M. B. J. Time Series Analysis 1, 47–71 (1980).

    MathSciNet  Article  Google Scholar 

  5. 5

    Eckman, J. P. & Ruell, D. Rev. mod. Phys. 57, 617–619 (1985).

    ADS  Article  Google Scholar 

  6. 6

    Crutchfield, J. P. & MacNamara, B. S. Complex Systems 1, 417–452 (1987).

    MathSciNet  Google Scholar 

  7. 7

    Casdagli, M. Physics D, 35, 335–356 (1989).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Grassberger, P. & Procaccia, I. Phys. Rev. Lett. 50, 346–369 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Schwartz, I. J. math. Biol. 21, 347–361 (1985).

    MathSciNet  CAS  Article  Google Scholar 

  10. 10

    Schaffer, W. M. & Kot, M. J. theor. Biol. 112, 403–407 (1985).

    CAS  Article  Google Scholar 

  11. 11

    Schaffer, W. M. & Kot, M. in Chaos: An introduction (ed. Holden, A. V.) (Princeton Univ. Press, 1986).

    Google Scholar 

  12. 12

    Schaffer, W. M., Ellner, S. & Kot, M. J. math. Biol. 24, 479–523 (1986).

    MathSciNet  CAS  Article  Google Scholar 

  13. 13

    Schaffer, W. M., Olsen, L. F., Truty, G. L., Fulmer, S. L. & Graser, D. J. in From Chemical to Biological Organization (eds Markus, M., Muller, S. C. & Nicolis, G.) (Springer-Verlag, New York, 1988).

    Google Scholar 

  14. 14

    Yule, G. U. Phil. Trans. R. Soc. A226, 267–278 (1927).

    ADS  Article  Google Scholar 

  15. 15

    Takens, F. in Dynamical Systems and Turbulence (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  16. 16

    Farmer, J. D. & Sidorowich, J. J. in Evolution, Learning and Cognition (ed. Lee, Y. C.) (World Scientific, New York, 1989).

    Google Scholar 

  17. 17

    London, W. P. & Yorke, J. A. Am. J. Epidem. 98, 453 (1973).

    CAS  Article  Google Scholar 

  18. 18

    Pimm, S. L. & Redfearn, A. Nature 334, 613–614 (1988).

    ADS  Article  Google Scholar 

  19. 19

    Lawton, J. H. Nature 334, 563 (1988).

    ADS  Article  Google Scholar 

  20. 20

    Helsenstein, U. Statist. Med. 5, 37–47 (1986).

    Article  Google Scholar 

  21. 21

    Anderson, R. M. & May, R. M. Nature 318, 323–329 (1985).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Anderson, R. M., Grenfell, B. T. & May, R. M. J. Hyg. 93, 587–608 (1984).

    CAS  Article  Google Scholar 

  23. 23

    Tont, S. A. J. mar. Res. 39, 191–201 (1981).

    Google Scholar 

  24. 24

    Varosi, F., Grebogi, C. & Yorke, J. A. Phys. Lett. A124, 59–64 (1987).

    MathSciNet  Article  Google Scholar 

  25. 25

    Abarbanel, H. D., Kadtke, J. B. & Brown, R. Phys. Rev. B41, 1782–1807 (1990).

    MathSciNet  CAS  Article  Google Scholar 

  26. 26

    Mees, A. I. Research Report No. 8 (Dept Mathematics, University of Western Australia, 1989).

  27. 27

    Drepper, F. R. in Erodynamics (eds Wolff, W., Soeder, C. J. & Drepper, F. R.) (Springer-Verlag, New York, 1988).

    Google Scholar 

  28. 28

    Ruelle, D. Proc. R. Soc. A (in the press).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugihara, G., May, R. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741 (1990). https://doi.org/10.1038/344734a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing