Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of the bacterial cell-division protein FtsZ


Bacterial cell division ends with septation, the constriction of the cell wall and cell membranes that leads to the formation of two daughter cells1,2. During septation, FtsZ, a protein of relative molecular mass 40,000 which is ubiquitous in eubacteria and is also found in archaea and chloroplasts3, localizes early at the division site to form a ring-shaped septum. This septum is required for the mechanochemical process of membrane constriction4. FtsZ is a GTPase5,6 with weak sequence homology to tubulins7. The nature of FtsZ polymers in vivo is unknown, but FtsZ can form tubules, sheets and minirings in vitro8,9. Here we report the crystal structure at 2.8 Å resolution of recombinant FtsZ from the hyperthermophilic methanogen Methanococcus jannaschii. FtsZ has two domains, one of which is a GTPase domain with a fold related to one found in the proteins p21ras and elongation factor EF-Tu. The carboxy-terminal domain, whose function is unknown, is a four-stranded β-sheet tilted by 90° against the β-sheet of the GTPase domain. The two domains are arranged around a central helix. GDP binding is different from that typically found in GTPases and involves four phosphate-binding loops and a sugar-binding loop in the first domain, with guanine being recognized by residues in the central connecting helix. The three-dimensional structure of FtsZ is similar to the structure of α- and β-tubulin10.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon drawings of FtsZ (residues 23–356) from M.jannaschii.
Figure 2: Secondary structure assignment of FtsZ1 from Mjannaschii.
Figure 3: Stereo plot of the active site of FtsZ.


  1. Rothfield, L. I. & Justice, S. S. Bacterial cell division: the cycle of the ring. Cell 88, 581–584 (1997).

    Article  CAS  Google Scholar 

  2. Donachie, W. D. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47, 199–230 (1993).

    Article  CAS  Google Scholar 

  3. Erickson, H. P. FtsZ, a tubulin homologue, in prokaryote cell division. Trends Cell Biol. 7, 362–367 (1997).

    Article  CAS  Google Scholar 

  4. Lutkenhaus, J. FtsZ ring in bacterial cytokinesis. Mol. Microbiol. 9, 403–409 (1993).

    Article  CAS  Google Scholar 

  5. de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).

    Article  ADS  CAS  Google Scholar 

  6. RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene FtsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Erickson, H. P. FtsZ, a prokaryotic homolog of tubulin? Cell 80, 367–370 (1995).

    Article  CAS  Google Scholar 

  8. Bramhill, D. & Thompson, C. M. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl Acad. Sci. USA 91, 5813–5817 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 2754–2758 (1994).

    Article  CAS  Google Scholar 

  10. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 269, 496–512 (1996).

    Google Scholar 

  12. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  Google Scholar 

  13. Tong, L., de Vos, A. M., Milburn, M. V. & Kim, S.-H. Crystal structures at 2.2 Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503–513 (1991).

    Article  CAS  Google Scholar 

  14. Rossmann, M. G., Moras, D. & Olsen, K. Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194–199 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Chook, Y. M., Gray, J. V., Ke, H. & Lipscomb, W. N. The monofunctional chorismate mutase from Bacillus subtilis: structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications on the mechanism of enzymatic reaction. J. Mol. Biol. 240, 476–500 (1994).

    Article  CAS  Google Scholar 

  16. Linse, K. & Mandelkow, E.-M. The GTP-binding peptide of β-tubulin. J. Biol. Chem. 263, 15205–15210 (1988).

    CAS  PubMed  Google Scholar 

  17. Sage, C. R. et al. Site-directed mutagenesis of putative GTP-binding sites of yeast β-tubulin: evidence that α-, β- and γ-tubulins are atypical GTPases. Biochemistry 34, 16870–16875 (1995).

    Article  CAS  Google Scholar 

  18. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Mukherjee, A., Dai, K. & Lutkenhaus, J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl Acad. Sci. USA 90, 1053–1057 (1993).

    Article  ADS  CAS  Google Scholar 

  20. de Pereda, J. M., Leynadier, D., Evangelio, J. A., Chacon, P. & Andreu, J. M. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry 35, 14203–14215 (1996).

    Article  CAS  Google Scholar 

  21. Sackett, D. L. Structure and function in the tubulin dimer and the role of the acidic carboxyl terminus. Subcell. Biochem. 24, 255–302 (1995).

    Article  CAS  Google Scholar 

  22. Leslie, A. G. W. Recent changes to the MOSFLM package for processing film and image plate data (SERC Laboratory, Daresbury, Warrington, UK, (1991)).

    Google Scholar 

  23. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 54, 760–763 (1994).

  24. Sheldrick, G. M. Heavy atom location using SHELXS-90.In Isomorphous Replacement and Anomalous Scattering: Proceedings of the CCP4 Study Weekend 25–26 January 1991 (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 23–38 (SERC Daresbury Laboratory, Warrington, UK, (1991)).

  25. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1-ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  26. Jones, T. A. Agraphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  27. Brünger, A. X-PLOR Version 3.1, A System for X-ray Crystallography and NMR (Yale University Press, New Haven and London, (1992)).

    Google Scholar 

  28. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  30. Barton, G. J. ALSCRIPT: a tool to format multiple sequence alignments. Prot. Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

Download references


We thank H. Huber (University of Regensburg) for M. jannaschii cells, I. Fearnley for mass spectrometry, B. Miroux for C41 cells and for discussion, and A. Murzin for pointing out the similarity to chorismate mutase. J.L. is supported by an EMBO long-term fellowship.

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Löwe, J., Amos, L. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing