Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of the αβ tubulin dimer by electron crystallography

An Erratum to this article was published on 14 May 1998


The αβ tubulin heterodimer is the structural subunit of microtubules, which are cytoskeletal elements that are essential for intracellular transport and cell division in all eukaryotes. Each tubulin monomer binds a guanine nucleotide, which is non-exchangeable when it is bound in the α subunit, or N site, and exchangeable when bound in the β subunit, or E site. The α- and β-tubulins share 40% amino-acid sequence identity, both exist in several isotype forms, and both undergo a variety of post-translational modifications1. Limited sequence homology has been found with the proteins FtsZ2 and Misato3, which are involved in cell division in bacteria and Drosophila, respectively. Here we present an atomic model of the αβ tubulin dimer fitted to a 3.7-Å density map obtained by electron crystallography of zinc-induced tubulin sheets. The structures of α- and β-tubulin are basically identical: each monomer is formed by a core of two β-sheets surrounded by α-helices. The monomer structure is very compact, but can be divided into three functional domains: the amino-terminal domain containing the nucleotide-binding region, an intermediate domain containing the Taxol-binding site, and the carboxy-terminal domain, which probably constitutes the binding surface for motor proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental phase and intensity data and fitted curves for two representative reciprocal lattice lines.
Figure 2: Sections of the experimental density map with the fitted model for different regions in the α- and β-tubulin molecules.
Figure 3: Sequences of pig brain α- and β-tubulin28 used in the model (in the absence of tubulin sequences from cow we have used its closest known relative).
Figure 4: Ribbon diagram of the tubulin dimer showing α-tubulin with bound GTP (top), and β-tubulin containing GDP and taxotere (bottom).


  1. Ludveña, R. F. The multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cyt. 178, 207–275 (1998).

    Article  Google Scholar 

  2. Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J.Bacteriol. 176, 2754–2758 (1994).

    Article  CAS  Google Scholar 

  3. Gabor Miklos, G. L., Yamamoto, M., Burns, R. G. & Maleszka, R. An essential cell division gene of Drosophila, absent from Saccharomyces, encodes an unusual protein with tubulin-like and myosin-like peptide motifs. Proc. Natl Acad. Sci. USA 94, 5189–5194 (1997).

    Article  ADS  Google Scholar 

  4. Nogales, E., Wolf, S. G., Zhang, S. X. & Downing, K. H. Preservation of 2-D crystals of tubulin for electron crystallography. J. Struct. Biol. 115, 199–208 (1995).

    Article  CAS  Google Scholar 

  5. Nogales, E., Wolf, S. G., Khan, I. A., Ludueña, R. F. & Downing, K. H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375, 424–427 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Nogales, E., Wolf, S. G. & Downing, K. H. Visualizing the secondary structure of tubulin: three-dimensional map at 4 Å. J. Struct. Biol. 118, 119–127 (1997).

    Article  CAS  Google Scholar 

  7. Burns, R. G. & Surridge, C. D. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 3–32 (Wiley, New York, (1993)).

    Google Scholar 

  8. Little, M. & Ludueña, R. F. Structural differences between brain β1- and β2-tubulins: implications for microtubule assembly and colchicine binding. EMBO J. 4, 51–56 (1985).

    Article  CAS  Google Scholar 

  9. Wolf, S. G., Nogales, E., Kikkawa, M., Gratzinger, D., Hirokawa, N. & Downing, K. H. Interpreting a medium-resolution model of tubulin: comparison of zinc-sheet and microtubule structure. J. Mol. Biol. 263, 485–501 (1996).

    Article  Google Scholar 

  10. Shivanna, B. D., Mejillano, M. R., Williams, T. D. & Himes, R. H. Exchangeable GTP binding site of β-tubulin—identification of cysteine 12 as the major site of cross-linking by direct photoaffinity labeling. J. Biol. Chem. 268, 127–132 (1993).

    CAS  PubMed  Google Scholar 

  11. Hesse, J., Thierauf, M. & Ponstingl, H. Tubulin sequence region β155–174 is involved in binding exchangeable guanosine triphosphate. J. Biol. Chem. 262, 15472–15475 (1987).

    CAS  PubMed  Google Scholar 

  12. Linse, K. & Mandelkow, E.-M. The GTP-binding peptide of β-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins. J. Biol. Chem. 263, 15205–15210 (1988).

    CAS  PubMed  Google Scholar 

  13. Davis, A., Sage, C. R., Dougherty, C. A. & Farrell, K. W. Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of β-tubulin. Science 264, 839–842 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Little, M. & Ludueña, R. F. Location of two cysteines in brain β1-tubulin that can be cross-linked after removal of exchangeable GTP. Biochim. Biophys. Acta 912, 28–33 (1987).

    Article  CAS  Google Scholar 

  15. Bai, R. et al. Identification of cysteine 354 of β-tubulin as part of the binding site for the A ring of colchicine. J. Biol. Chem. 271, 12639–12645 (1996).

    Article  CAS  Google Scholar 

  16. Uppuluri, S., Knipling, L., Sackett, D. L. & Wolff, J. Localization of the colchicine-binding site of tubulin. Proc. Natl Acad. Sci. USA 90, 11598–11602 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Shearwin, K. E. & Timasheff, S. N. Effect of colchicine analogs on the dissociation of αβ tubulin into subunits: the locus of colchicine binding. Biochemistry 33, 894–901 (1994).

    Article  CAS  Google Scholar 

  18. Andreu, J. M. Site-directed antibodies to tubulin. Cell Motil. Cytoskel. 26, 1–6 (1993).

    Article  CAS  Google Scholar 

  19. Caplow, M., Ruhlen, R. L. & Shanks, J. The free energy of hydrolysis of a microtubule-bound nucleoside triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J. Cell Biol. 127, 779–788 (1994).

    Article  CAS  Google Scholar 

  20. Vale, R. D., Coppin, C. M., Malik, F., Kull, F. J. & Milligan, R. A. Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules. J. Biol. Chem. 269, 23769–23775 (1994).

    CAS  PubMed  Google Scholar 

  21. Hyman, A. A., Chrétien, D., Arnal, I. & Wade, R. H. Structural changes accompanying GTP hydrolysis of microtubules: information from a slowly hydrolyzable analog guanylyl-(α,β)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).

    Article  CAS  Google Scholar 

  22. Díaz, J. F., Pantos, E., Bordas, J. & Andreu, J. M. Solution structure of GDP-tubulin double rings to 3 nm resolution and comparison with microtubules. J. Mol. Biol. 238, 214–225 (1994).

    Article  Google Scholar 

  23. Mandelkow, E. & Mandelkow, E.-M. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol. 7, 72–81 (1995).

    Article  CAS  Google Scholar 

  24. Gueritte-Voegelein, F. et al. Structure of a synthetic taxol precursor: N -tert-butoxycarbonyl-10-deacetyl-N -debenzoyltaxol. Acta Crystallogr. C 46, 781–784 (1990).

    Article  Google Scholar 

  25. Rao, S., Krauss, N. E., Heerding, J. M., Orr, G. A. & Horwitz, S. B. 3′-(p -Azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J. Biol. Chem. 269, 3132–3134 (1994).

    CAS  PubMed  Google Scholar 

  26. Rao, S., Orr, G. A., Chaudhary, A. G., Kingston, D. G. I. & Horwitz, S. B. Characterization of the taxol binding site on the microtubule. J. Biol. Chem. 270, 20235–20238 (1995).

    Article  CAS  Google Scholar 

  27. Löwe, J. Y. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ complexed with GDP. Nature 391, 203–206 (1998).

    Article  ADS  Google Scholar 

  28. Ponstingl, H., Krauhs, E., Little, M., Kempf, T., Hofer-Warbinek, R. & Ade, W. Amino acid sequence of α- and β-tubulins from pig brain: heterogeneity and regional similarity to muscle proteins. Cold Spring Harbor Symp. Quant. Biol. 46, 191–197 (1982).

    Article  Google Scholar 

  29. Mitchison, T. J. Localization of an exchangeable GTP binding site at the plus end of microtubules. Science 261, 1044–1047 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Fan, J., Griffiths, A. D., Lockhart, A., Cross, R. A. & Amos, L. A. Microtubule minus ends can be labeled with a phage display antibody specific to α-tubulin. J. Mol. Biol. 259, 325–330 (1996).

    Article  CAS  Google Scholar 

Download references


We thank R. F. Ludueña for isotypically purified αβII and αβIII tubulin, M. Le for help with electron diffraction processing, and R. M. Glaeser and Y. L. Han for comments on the manuscript. Taxol was provided by the Drug Synthesis and Chemistry Branch, Division of Cancer Treatment of the National Cancer Institute. This work was supported by the NIH.

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nogales, E., Wolf, S. & Downing, K. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing