Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Female sticklebacks use male coloration in mate choice and hence avoid parasitized males

Abstract

AN important problem in evolutionary biology since the time of Darwin has been to understand why females preferentially mate with males handicapped by secondary sexual ornaments1–3. One hypothesis of sexual selection theory is that these ornaments reliably reveal the male's condition4–6, which can be affected for example by parasites4,7–13. Here we show that in the three-spined stickleback (Gasterosteus aculeatus) the intensity of male red breeding coloration positively correlates with physical condition. Gravid females base their active mate choice on the intensity of the male's red coloration. Choice experiments under green light prevent the use of red colour cues by females, and males that were previously preferred are now chosen no more than randomly, although the courtship behaviour of the males remains unchanged. Parasitieation causes a deterioration in the males' condition and a decrease in the intensity of their red coloration. Tests under both lighting conditions reveal that the females recognize the formerly parasitized males by the lower intensity of their breeding coloration. Female sticklebacks possibly select a male with a good capacity for paternal care14 but if there is additive genetic variation for parasite resistance, then they might also select for resistance genes, as proposed by Hamilton and Zuk4.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bradbury, J. W. & Andersson, M. B. (eds) Sexual Selection: Testing the Alternatives (Wiley, New York, 1987).

  2. 2

    Kirkpatrick, M. Ann. Rev. Ecol. Syst. 18, 43–70 (1987).

    Article  Google Scholar 

  3. 3

    Maynard-Smith, J. J. theor. Biol. 115, 1–8 (1985).

    MathSciNet  Article  Google Scholar 

  4. 4

    Hamilton, W. D. & Zuk, M. Science 218, 384–387 (1982).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Zahavi, A. J. theor. Biol. 53, 205–214 (1975).

    CAS  Article  Google Scholar 

  6. 6

    Andersson, M. Biol. J. Linn. Soc. 17, 375–393 (1982).

    Article  Google Scholar 

  7. 7

    Read, A. F. Nature 328, 68–70 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Ward, P. I. Anim. Behav. 36, 1210–1215 (1988).

    Article  Google Scholar 

  9. 9

    Ward, P. I. Oikos 55, 428–429 (1989).

    Article  Google Scholar 

  10. 10

    Read, A. F. & Harvey, P. H. Nature 339, 618–620 (1989).

    ADS  Article  Google Scholar 

  11. 11

    Pomiankowski, A. Nature 338, 115–116 (1989).

    ADS  Article  Google Scholar 

  12. 12

    Endler, J. A. & Lyles, A. M. Trends Ecol. Evol. 4, 246–248 (1989).

    CAS  Article  Google Scholar 

  13. 13

    Read, A. Trends Ecol. Evol. 3, 97–101 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Heywood, J. S. Evolution 43, 1387–1397 (1989).

    Article  Google Scholar 

  15. 15

    Brush, A. H. & Reisman, H. M. Comp. Biochem. Physiol. 14, 121–125 (1965).

    CAS  Article  Google Scholar 

  16. 16

    Semler, D. E. J. Zool. 165, 291–302 (1971).

    Article  Google Scholar 

  17. 17

    Endler, J. A. Evolution 34, 76–91 (1980).

    Article  Google Scholar 

  18. 18

    Endler, J. A. Env. Biol. Fish. 9, 173–190 (1983).

    Article  Google Scholar 

  19. 19

    Kodric-Brown, A. Behav. Ecol. Sociobiol. 17, 199–205 (1985).

    Article  Google Scholar 

  20. 20

    Houde, A. E. Evolution 41, 1–10 (1987).

    Article  Google Scholar 

  21. 21

    Houde, A. E. Anim. Behav. 36, 510–516 (1988).

    Article  Google Scholar 

  22. 22

    Kennedy, C. E. J., Endler, J. A., Poynton, S. L. & McMinn, H. Behav. Ecol. Sociobiol. 21, 291–295 (1987).

    Article  Google Scholar 

  23. 23

    Bischoff, R. J., Gould, J. L. & Rubenstein, D. I. Behav. Ecol. Sociobiol. 17, 253–255 (1985).

    Article  Google Scholar 

  24. 24

    Wootton, R. J. The Biology of the Sticklebacks (Academic, London, 1976).

    Google Scholar 

  25. 25

    ter Pelkwijk, J. J. & Tinbergen, N. Z. Tierpsychol. 1, 193–200 (1937).

    Article  Google Scholar 

  26. 26

    van lersel, J. J. A. Behaviour Suppl. 3, 1–159 (1953).

    Google Scholar 

  27. 27

    Sevenster, P. Behaviour Suppl. 9, 1–170 (1961).

    Google Scholar 

  28. 28

    Sokal, R. R. & Rohlf, F. J. Biometry 2nd edn (Freeman, New York, 1981).

    MATH  Google Scholar 

  29. 29

    Long, K. D. & Houde, A. E. Ethology 82, 316–324 (1989).

    Article  Google Scholar 

  30. 30

    Smyth, J. D. Introduction to Animal Parasitology (Hodder and Stoughton, London, 1985).

    Google Scholar 

  31. 31

    Reisman, H. M. Copeia 1968, 816–826 (1968).

    Article  Google Scholar 

  32. 32

    Bakker, T. C. M. Behaviour 98, 1–144 (1986).

    Article  Google Scholar 

  33. 33

    McLennan, D. A. & McPhail, J. D. Can. J. Zool. 67, 1767–1777 (1989).

    Article  Google Scholar 

  34. 34

    Cronly-Dillon, J. & Sharma, S. C. J. exp. Biol. 49, 679–687 (1968).

    CAS  PubMed  Google Scholar 

  35. 35

    McCallum, H. I. Parasitology 85, 475–488 (1982).

    Article  Google Scholar 

  36. 36

    Price, D. J. J. Fish Biol. 26, 509–519 (1985).

    Article  Google Scholar 

  37. 37

    Bolger, T. & Connolly, P. L. J. Fish Biol. 34, 171–182 (1989).

    Article  Google Scholar 

  38. 38

    Miller, R. G. Jr Beyond ANOVA, Basics of Applied Statistics (Wiley, New York, 1986).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milinski, M., Bakker, T. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344, 330–333 (1990). https://doi.org/10.1038/344330a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing