Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on Earth accretion deduced from noble metals in the oceanic mantle

Abstract

If the Earth's mantle were in equilibrium with its core, the mantle would contain three orders of magnitude less of the noble metals (platinum-group elements Pt, Os, Ir, Ru, Pd and Rh, plus Au and Re) than are observed. An explanation put forward to account for this disparity has been that the last 1% of the Earth's accretion occurred after the iron-rich core had separated from the mantle1,2. Recent debate has accordingly centred on which meteorite class or classes made up this ‘late veneer’ of accretion3. Here we present analyses of noble-metal concentrations in oceanic peridotites (plutonic rocks which are thought to represent samples of the Earth's upper mantle). We find that the average oceanic-mantle Os/Ir ratio is indistinguishable from that in the CI-type carbonaceous chondrites4, but that Ru/Ir, Pt/Ir, Rh/Ir and Pd/Ir ratios are about 40% higher. A late veneer composed of strictly CI-type carbonaceous chondritic composition is therefore not compatible with these observations. The data also allows us to rule out other carbonaceous chondrites5, enstatite chondrites6,7 and ordinary chondrites8 as significant late veneer components. We propose that mixing of differentiated outer-core material back into the mantle after core separation could account for the observed noble-metal ratios and abundances in the mantle without any late accretionary veneer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abyssal peridotite noble metal abundances.
Figure 2: Abyssal peridotite noble metal abundances.
Figure 3: Distribution of Os/Ir and Ru/Ir ratios for mean abyssal peridotites (closed circles) and chondrites.

Similar content being viewed by others

References

  1. Chou, C. L. Fractionation of siderophile elements in the Earth's upper mantle. Proc. Lunar Planet. Sci. Conf. 9, 219–230 (1978).

    ADS  Google Scholar 

  2. Jagoutz, E. et al. The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf. 2, 2031–2050 (1979).

    ADS  Google Scholar 

  3. Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the primitive upper mantle. Nature 383, 517–520 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Palme, H. & Beer, H. in Astronomy and Astrophysics (ed. Voigt, H. H.) 196–221 (Springer, Berlin, (1993)).

    Google Scholar 

  5. Jochum, K. P. Rhodium and other platinum-group elements in carbonaceous chondrites. Geochim. Cosmochim. Acta 60, 3353–3357 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Hertogen, J., Janssens, M. J., Takahashi, H., Morgan, J. W. & Anders, E. Enstatite chondrites; trace element clues to their origin. Geochim. Cosmochim. Acta 47, 2241–2255 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Kallemeyn, G. W. & Wasson, J. T. Compositions of enstatite (EH3, EH4,5 and EL6) chondrites; implications regarding their formation. Geochim. Cosmochim. Acta 50, 2153–2164 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Kong, P. & Ebihara, M. The origin and nebular history of the metal phase of ordinary chondrites. Geochim. Cosmochim. Acta 61, 2317–2329 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Cannat, M. et al. Site 920. Proc. Ocean Drilling Progr. Part A: Init. Rep. 153, 45–119 (1995).

    Google Scholar 

  10. Gillis, K. M. et al. Site 895. Proc. Ocean Drilling Progr. Part A: Init. Rep. 147, 109–157 (1993).

    Google Scholar 

  11. Snow, J. E. & Dick, H. J. B. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta 59, 4219–4235 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Snow, J. E. & Reisberg, L. Os isotopic systematics of the MORB mantle; results from altered abyssal peridotites. Earth Planet. Sci. Lett. 133, 411–421 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Peach, C. L., Mathez, E. A. & Keays, R. R. Sulfide melt–silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB; implications for partial melting. Geochim. Cosmochim. Acta 54, 3379–3389 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Peach, C. L. & Mathez, E. A. Constraints on the formation of platinum-group element deposits in igneous rocks. Econ. Geol. Bull. Soc. Econ. Geol. 91, 439–450 (1996).

    Article  CAS  Google Scholar 

  15. Reisberg, L. & Lorand, J. P. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159–162 (1995).

    Article  ADS  CAS  Google Scholar 

  16. O'Hanley, D. Serpentinites: Records of Tectonic and Petrological History 1–300 (Oxford Univ. Press, New York, (1996).

    Google Scholar 

  17. Pattou, L., Lorand, J. P. & Gros, M. Non-chondritic platinum-group element ratios in the Earth's mantle. Nature 379, 712–715 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Schmidt, G., Palme, H., Kratz, K.-L. & Kurat, G. Are highly siderophile elements (PGE, Re and Au) fracitonated in the upper mantle? New results on peridotites from Zabargad. Chem. Geol. (submitted).

  19. Anders, E. & Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 46, 2363–2280 (1989).

    Article  ADS  Google Scholar 

  20. Kallemeyn, G. & Wasson, J. The compositional classification of chondrites-I: The carbonaceous chondrite groups. Geochim. Cosmochim. Acta 45, 1217–1230 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Phil. Trans. R. Soc. Lond. A 323, 535–544 (1988).

    Article  ADS  Google Scholar 

  22. Walker, R. J., Morgan, J. W. & Horan, M. F. Osmium-187 enrichment in some plumes; evidence for core–mantle interaction? Science 269, 819–822 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Widom, E. & Shirey, S. Os isotope systematics in the azores: Implications for mantle plume sources. Earth. Planet. Sci. Lett. 142, 451–465 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Walker, R. et al. Applications of the 190Pt–186Os isotope system to geochemistry and cosmochemistry. Geochim. Cosmochim. Acta (in the press).

  25. Pernicka, E. & Wasson, J. T. Ru, Re, Os, Pt and Au in iron meteorites. Geochim. Cosmochim. Acta 51, 1717–1726 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Hoashi, M., Brooks, R. R. & Reeves, R. D. Palladium, platinum and ruthenium in iron meteorites and their taxonomic significance. Chem. Geol. 106, 207–218 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Ryan, D. E., Holzbecher, J. & Brooks, R. R. Rhodium and osmium in iron meteorites. Chem. Geol. 85, 295–303 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Schmidt, G. & Palme, H. in EAG Workshop: The Origin and Fractionation of Highly Siderophile Elements in the Earth's Mantle (eds Brügman, G., Lorand, J. P. & Palme, H.) 71–72 (Max-Planck Institut für Chemie, Mainz, Germany, (1997)).

    Google Scholar 

  29. Schmidt, G. Clues to the nature of the impacting bodies from platinum-group elements in borehole samples from the clearwater east crater (Canada) and the Boltysh impact crater (Ukraine). Meteorit. Planet. Sci. 32, 761–767 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Fryer, B. J. & Greenough, J. D. Evidence for mantle heterogeneity from plantinum-group-element abundances in Indian Ocean basalts. Can. J. Earth Sci. 29, 2329–2340 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Morgan, J. P. & Morgan, W. J. Rare gas and isotopic evolution of the mantle. Terra Abstr. 9, 47 (1997).

    Google Scholar 

  32. Morgan, W. J. & Morgan, J. P. Two-stage melting of a multi-component mantle: A way to generate both OIB and MORB from ‘whole mantle’ convection. Terra Abstr. 9, 57 (1997).

    Google Scholar 

  33. Wasson, J. Meteorites 1–267 (Freeman, New York, (1985)).

    Google Scholar 

  34. Kallemeyn, G. W., Rubin, A. E., Wang, D. & Wasson, J. T. Ordinary chondrites; bulk compositions, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochim. Cosmochim. Acta 53, 2747–2767 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Brügmann, A. W. Hofmann, K. P. Jochum and R. Walker for many useful discussions. Henry Dick and the Ocean Drilling Program kindly provided samples. L. Feld edited the typescript. J.E.S. acknowledges the support of an Alexander-von-Humboldt Fellowship during the course of this work. G.S. acknowledges financial support from the Deutsche Forschungsgemeinschaft to K.-L. Kratz and H. Palme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Snow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, J., Schmidt, G. Constraints on Earth accretion deduced from noble metals in the oceanic mantle. Nature 391, 166–169 (1998). https://doi.org/10.1038/34396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34396

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing