Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upper limit set for level of lightning activity on Titan

Abstract

LIGHTNING is known to occur in the atmospheres of Earth and Jupiter1, and there is strong evidence of lightning on Saturn2 and Uranus3. Based on its extensive atmosphere, the presence of aerosols and the deposition of significant amounts of solar energy at its surface, it has been calculated that Saturn's largest moon, Titan, may produce lightning with an energy dissipation rate somewhat less than that at Earth4. An opportunity to search for evidence of lightning at Titan occurred during the Voyager 1 encounter with Saturn on 12 November 1980, when the spacecraft passed within 4,394 km of Titan's cloud tops. Because optically thick cloud and haze layers prevented lighting detection at optical wavelengths, we have searched for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument5 aboard Voyager 1. Given the maximum ionosphere density6,7 of 3 × 103cm−3, lightning spherics should be detectable above an observing frequency of 500 kHz. Failing to find any evidence for lightning-associated spherics, we infer an upper limit to the total energy per flash in Titan lightning of 106 J, or about a thousand times weaker than that typical of terrestrial lightning. The level of lightning activity on Titan has implications for the production of certain hydrocarbons in its atmosphere and for the design of instruments on spacecraft such as Cassini, which is scheduled to arrive at Saturn in 2002.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, B. A. et al. Science 204, 951–972 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Kaiser, M. L., Connerney, J. E. P. & Desch, M. D. Nature 303, 50–53 (1983).

    Article  ADS  Google Scholar 

  3. Zarka, P. & Pedersen, B. M. Nature 323, 605–608 (1986).

    Article  ADS  Google Scholar 

  4. Borucki, W. J., McKay, C. P. & Whitten, R. C. Icarus 60, 260–273 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Warwick, J. W. et al. Space Sci. Rev. 21, 309–319 (1977).

    Article  ADS  Google Scholar 

  6. Strobel, D. F. & Shemansky, D. E. J. geophys. Res. 87, 1361–1368 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Lindal, G. F. et al. Icarus 53, 348–363 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Kaiser, M. L., Desch, M. D. & Lecacheux, A. Nature 292, 731–733 (1981).

    Article  ADS  Google Scholar 

  9. Homer, F. Advances in Radio Research Vol. 2 (ed. Saxon, J. A.) 121–204 (Academic, New York, 1964).

    Google Scholar 

  10. Taylor, W. L. J. Res. natn. Bur. Stand. 67D, 539–550 (1963).

    Google Scholar 

  11. Lanzerotti, L. J. et al. J. geophys. Res. 94, 13221–13227 (1989).

    Article  ADS  Google Scholar 

  12. Kotaki, M. & Katoh, C. J. atmos. terr. Phys. 45, 833–847 (1983).

    Google Scholar 

  13. LeVine, D. M. & Meneghini, R. Radio Sci. 13, 801–809 (1978).

    Article  ADS  Google Scholar 

  14. Vonnegut, B. Met. Monogr. 5, 224–241 (1963).

    Google Scholar 

  15. Smith, G. R. et al. J. geophys. Res. 87, 1351–1359 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Borucki, W. J. et al. Icarus 72, 604–622 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Ratcliffe, J. A. The Magnetoionic Theory and its Applications to the Ionosphere (Cambridge University Press, 1962).

    Google Scholar 

  18. Zarka, P. Astr. Astrophys. 146, L15–L18 (1985).

    ADS  Google Scholar 

  19. Borucki, W. J. & Chameides, W. L. Rev. Geophys. Space Phys. 22, 363–372 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Yung, Y. L., Allen, M. & Pinto, J. P. Astrophys. J. Suppl. Ser. 55, 465–506 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Borucki, W. J. et al. Icarus 76, 125–134 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Rinnert, K. J. geophys. Res. 90, 6225–6237 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desch, M., Kaiser, M. Upper limit set for level of lightning activity on Titan. Nature 343, 442–444 (1990). https://doi.org/10.1038/343442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343442a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing