Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A transgenic mouse model of sickle cell disorder

Abstract

A SINGLE base-pair mutation (βs) in codon 6 of the human β-globin gene, causing a single amino-acid substitution, is the cause of sickle cell anaemia1. The mutant haemoglobin molecule, HbS, polymerizes when deoxygenated and causes deformation of the erythrocytes to a characteristic 'sickled' shape. Sickling of cells in small vessels causes painful crises and other life-threatening complications2,3. Although the molecular basis for sickle cell anaemia has been known for 30 years, no definitive treatment is available4. An animal model of sickle cell anaemia would not only allow a detailed analysis of the factors that initiate erythrocyte sickling in vivo and of the pathophysiology of the disease, but would also permit the development of novel approaches to the treatment of the disease. By using the dominant control region sequences from the human β-globin locus, together with human α and βS-globin genes, we have obtained three transgenic mice with HbS levels ranging from 10 to 80% of total haemoglobin in their red cells. As observed in homozygous and heterozygous Hbspatients, the erythrocytes of this mouse sickle readily on deoxygenation. Irreversibly sickled cells2,3, which are characteristic of sickle-cell patients homozygous for βs, are also observed in the peripheral blood of the mouse with high levels of HbS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ingram, V. A. Nature 178, 792 (1956).

    Article  ADS  CAS  Google Scholar 

  2. Serjeant G. R. Sickle Cell Disease (Oxford University Press, 1985).

    Google Scholar 

  3. Schechter, A. N., Noguchi, C. T. & Rodgers, G. P. in The Molecular Basis of Blood Diseases (eds Stamatoyannopoulos, G., Nienhuis, A, W., Leder, P. & Majerus, P. W.) 179–218 (W. B. Saunders, Philadelphia, 1987).

    Google Scholar 

  4. Luzzatto, L. & Goodfellow, P. Nature 337, 17–18 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Grosveld, F., Blom van Assendelft, G., Greaves, D. R. & Kollias, G. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  6. Blom van Assendelft, G., Hanscombe, O., Grosveld, F. & Greaves, D. R. Cell 56, 969–977 (1989).

    Article  CAS  Google Scholar 

  7. Talbot, D. et al. Nature 338, 352–355 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Hanscombe, O. et al. Genes Dev. 3, 1572–1581 (1989).

    Article  CAS  Google Scholar 

  9. Ryan, T. M. et al. Genes Dev. 3, 314–323 (1989).

    Article  CAS  Google Scholar 

  10. Behringer, R. R. et al. Science 245, 971–973 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Ryan, T. M., Behringer, R. R., Townes, T. M., Palmiter, R. D. & Brinster, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 37–41 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Collis, P., Antoniou, M. & Grosveld, F. EMBO J. (in the press).

  13. Daland, Q. A. & Castle, W. B. J. Lab. clin. Med. 33, 1082–1088 (1948).

    CAS  PubMed  Google Scholar 

  14. Rhoda, M. D. et al. Biochim. biophys. Acta 953, 208–212, (1988).

    Article  Google Scholar 

  15. Bentles, J. F. & Milner, D. F. A. J. clin. Invest. 47, 1731–1741 1968).

    Article  Google Scholar 

  16. Noguchi, C. T. & Schecter, A. N. Blood 58, 1057–1068.

  17. Padilla, F., Bromberg, P. A. & Jensen, W. N. Blood 41, 653–660 (1978).

    Google Scholar 

  18. van Ehrenstein, G. Acta physiol. Scand. 44, 80–91 (1948).

    Article  Google Scholar 

  19. van Patten, L. M. Blood 13, 789–794 (1958).

    Google Scholar 

  20. Edington, G. M. & Lehmann, H. Br. Med. J. i, 1308–1311 (1955).

    Article  Google Scholar 

  21. Conley, C. L., Weatherall, D. J., Richardson, S. N., Shepard, M. K. & Charache, S. Blood 21, 261–281 (1963).

    CAS  PubMed  Google Scholar 

  22. Talbot, J. F., Bird, A. C. & Sarjeant, G. R. Br. J. Ophthalmol. 67, 777–778 (1983).

    Article  CAS  Google Scholar 

  23. Martinell, J., Whitney, J. B. III, Popp, R. A., Russell, L. B. & Anderson, W. F. Proc. natn. Acad. Sci. U.S.A. 78, 5056–5060 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Skow, L. C. et al. Cell 34, 1043–1052.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaves, D., Fraser, P., Vidal, M. et al. A transgenic mouse model of sickle cell disorder. Nature 343, 183–185 (1990). https://doi.org/10.1038/343183a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343183a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing