Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational determination of the greenhouse effect


Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapour and the green-house effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Hansen, J. et al. Climate Processes and Climate Sensitivity (eds Hansen, J. & Takahashi, T.) 130–163 (Am. geophys. Un., Washington, DC, 1984).

    Google Scholar 

  2. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 24, 241–259 (1967).

    ADS  CAS  Article  Google Scholar 

  3. Cess, R. D. J. atmos. Sci. 33, 1831–1843 (1976).

    ADS  Article  Google Scholar 

  4. Barkstrom, B. R. Bull. Am. met. Soc. 65, 1170–1185 (1984).

    Article  Google Scholar 

  5. Ramanathan, V. et al. Science 243, 57–62 (1989).

    ADS  CAS  Article  Google Scholar 

  6. Beuttner, K. J. K. & Kern, C. D. J. geophys. Res. 70, 1329–1337 (1965).

    ADS  Article  Google Scholar 

  7. Reynolds, R. W. J. clim. 1, 75–86 (1988).

    ADS  Article  Google Scholar 

  8. Dickinson, R. E. & Cicerone, R. J. Nature 319, 109–114 (1986).

    ADS  CAS  Article  Google Scholar 

  9. Prabhakara, C., Short, D. A. & Vollmer, B. E. J. Clim. appl. Met. 24, 1311–1324 (1985).

    Article  Google Scholar 

  10. Mitchell, J. F. B., Wilson, C. A. & Cunnington, W. M. Q. Jl R. met. Soc., 113, 293–322 (1987).

    ADS  CAS  Article  Google Scholar 

  11. Stone, P. H. & Carlson, J. H. J. atmos. Sci. 36, 415–423 (1979).

    ADS  Article  Google Scholar 

  12. Coakley, J. A. J. atmos. Sci. 34, 465–470 (1977).

    ADS  Article  Google Scholar 

  13. Prabhakara, C. Chang, H. D. & Chang, A. T. C. J. appl. Met. 21, 59–68 (1982).

    Article  Google Scholar 

  14. Stephens, G. J. Clim. (in the press).

  15. Goody, R. M. Atmospheric Radiation Vol. 1 Ch. 9 (Oxford University Press, 1964).

    Google Scholar 

  16. Luther, F. M. World Climate Programme Vol. 93 (WM0, Geneva 1984).

    Google Scholar 

  17. Williamson, et al. NCAR Technical Note NCAR/TN-285 +STR (NCAR, Boulder, Colorado, 1987).

  18. Kiehl, J. T. & Ramanathan, V. J. geophys. Res. (in the press).

  19. Wetherald, R. T. & Manabe, S. J. atmos. Sci. 32, 2044–2059 (1975).

    ADS  Article  Google Scholar 

  20. Gadgil, S., Joseph, P. V. & Joshi, N. V. Nature 312, 142–143 (1984).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raval, A., Ramanathan, V. Observational determination of the greenhouse effect. Nature 342, 758–761 (1989).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing