Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein


EXCITATORY amino acids (EAAs) are important neurotransmit-ters in the vertebrate central nervous system1. Electrophysiological and ligand-binding studies indicate that at least three different receptor subtypes for EAAs exist—N-methyl-D-aspartate, kainate and quisqualate receptor subtypes—on the basis of the preferred agonist of the receptors1,2. We recently purified a kainate-binding protein (KBP) from frog (Rana pipiens berlandieri) brain by domoic acid (a high-affinity kainate analogue) affinity Chromatography3, and showed that the kainate-binding activity was associated with a protein of relative molecular mass 48,000 (Mr 48 K) 3,4. The pharmacological properties and the anatomical distribution of KBP were consistent with those of a kainate recep-tor-ionophore complex3–5. We have now isolated a complementary DNA encoding KBP of Mr 48 K. The deduced amino-acid sequence of the KBP has similar hydrophobic profiles to those found in other ligand-gated ion channel subunits6, and shows some amino-acid sequence similarities to the corresponding regions of brain nicotinic acetyIcholine receptor subunits7. Localization of the KBP messenger RN As by in situ hydridization histochemistry is compatible with the results of immunohistochemistry and receptor autoradiography studies5. COS-7 cells transfected with the cDNA encoding the KBP show high-affinity kainate-binding activity with pharmacological properties similar to those of the biochemically purified KBP (ref. 3). These results provide the first molecular characterization of an EAA-binding site and raise the possibility that the KBP cDNA encodes a ligand-binding subunit of a kainate receptor–ionophore complex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Monaghan, D. T., Bridge, R. J. & Cotman, C. W. A. Rev. Pharmac. Tox. 29, 365–402 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Foster, A. C. & Fagg, G. Brain Res. Rev. 7, 103–164 (1984).

    CAS  Article  Google Scholar 

  3. 3

    Hampson, D. R. & Wenthold, R. J. J. biol. Chem. 263, 2500–2505 (1988).

    CAS  PubMed  Google Scholar 

  4. 4

    Hampson, D. R., Wheaton, K. D., Dechesne, C. J. & Wenthold, R. J. J. biol. Chem. 264, 13329–13335 (1989).

    CAS  PubMed  Google Scholar 

  5. 5

    Dechesne, C. J. et al. J. Neurosci. (in the press).

  6. 6

    Barnard, E. A., Darlison, M. G. & Seeburg, P. Trends Neurosci. 10, 502–509 (1987).

    CAS  Article  Google Scholar 

  7. 7

    Wada, K. et al. Science 240, 330–334 (1988).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Saiki, R. K. et al. Science 239, 487–491 (1988).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    CAS  Article  Google Scholar 

  10. 10

    von Heijne, G. Nucleic Acids Res. 14, 4683–4690 (1986).

    CAS  Article  Google Scholar 

  11. 11

    Marshall, R. D. Biochem. Soc. Symp. 40, 17–26 (1974).

    CAS  Google Scholar 

  12. 12

    Chen, C. & Okayama, H. Molec. cell. Biol. 7, 2745–2752 (1987).

    CAS  Article  Google Scholar 

  13. 13

    Munson, P. J. & Rodbard, D. Analyt. Biochem. 98, 39–45 (1980).

    Google Scholar 

  14. 14

    Grenningloh, G. et al. Nature 328, 215–220 (1987).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Sumikawa, K. & Miledi, R. Proc. natn. Acad. Sci. U.S.A. 85, 1302–1306 (1988).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    CAS  Article  Google Scholar 

  17. 17

    Engelman, D. M., Steitz, T. A. & Goldman, A. A. Rev. Biophys. biophys. Chem. 15, 321–353 (1986).

    CAS  Article  Google Scholar 

  18. 18

    Schofield, P. R. et al. Nature 328, 221–227 (1987).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Giraudat, J. et al. Biochemistry 26, 2410–2418 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N. & Lester, H. A. Science 242, 1578–1581 (1988).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Imoto, K. et al. Nature 335, 645–648 (1988).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kurosaki, T. et al. FEBS Lett. 214, 253–258 (1987).

    CAS  Article  Google Scholar 

  23. 23

    Boulter, J. et al. Proc. natn. Acad. Sci. U.S.A. 84, 7763–7767 (1987).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  25. 25

    Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Okayama, H. et al. Meth. Enzym. 154, 3–28 (1987).

    CAS  Article  Google Scholar 

  27. 27

    Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, suppl. 3 (ed. Dayhoff, M. O.) 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wada, K., Dechesne, C., Shimasaki, S. et al. Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342, 684–689 (1989).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing