Similarity in membrane proteins

SIR-Adams and Pollard recently discovered that the nonfilamentous myosins IA and IB of Acanthamoeba can bind to membranes, a finding with important implications concerning the role of these proteins in cell motility. We would like to draw attention to a 50-amino-acid domain in the sequence of the myosin-IB isozyme² that is shared with a diverse family of cytotwo proteins of another single-celled eukaryote, Saccharomyces cerevisiae. The fus1 protein on the cell membrane is essential for cell fusion during mating^{6,7}; cdc25 is a regulator of the membrane associated adenylyl cyclase. The SH3 motif is, therefore, shared by membraneassociated proteins of both single-celled and higher eukarvotes. This conservation

revealed SH3 domains in cdc25 and fus1,

indicates a basic function common to all

eukarvotes but this function is still a

mystery. Although SH3 is found in many

proteins at the cell periphery, it is not

universal; it is absent from erythroid

Adams and Pollard mapped the

membrane-binding region of myosin-IA

to a 100K N-terminal chymotryptic frag-

ment, but the binding region of myosin-IB

has not vet been localized. Intriguingly,

the SH3 domain of the IB protein is close

to the protein's ATP-independent actinbinding site8. It will be interesting to see

whether the SH3 domains of myosin-IB

and other proteins play a role in binding

either directly to membranes or to the

ADAM R. F. RODAWAY

DAVID L. BENTLEY

MICHAEL J. E. STERNBERG

submembrane cytoskeleton.

spectrin for instance.

Myosin-1B	(983)	ALYDFARE	NPDE	-LTFNEGAUUTUI-NK	SNPDWWEGELNGQR-GUFPASYVELI-PR	ref.2
Fodrin- a	(974)	ALYBygeksPrEvTmkkGdilTll-NstNkDWWkvEvNdrq-GfvPAaYUkkl-dp				
PLC148	(798)	ALfDykAqreDELTFtksAiiqnv-eKqeggWWrGdyhhkkq-IwFPsnYVEemv-s				
v-Crk	(375)	ALfDFkgnddgdLpFkkGdilkir-dKpeeqWWnaEdmdGkR-GmiPvpYVEkcrPs				
c-Fgr	(84)	ALYDyeAr	teDd	-LTFtkGekfhil-Nn	tegDWWEars1ssGkt-GciPsnYVapv-ds	9
Lsk	(67)	ALhsyeps	hdgd	-LgFekGeq ri -eq	S-geWWkaqsIttGQe-GfiPfnfVaka-ns	10
c-Yes	(97)	ALYDyefir	tted	-LsFkkGerfqiI-Nn	tegDWWEarsiatGkn-GyiPsnYVapa-ds	11
Hck	(62)	ALYDyeAi	hred	-LsFqkGdqmvVI-ee	a-geWWkarsla-~tke~~GyiPsnYVarv-ns	12
c-Src	(88)	ALYDyesr	tetd	-LsFkkGerlqiv-Nn	tegDWWlahsIt-~tGQt-GyiPsnYVaps-ds	13
c-Abl	(68)	ALYDFUAS	gdnt	-LsitkGekIrVIgynl	hNgeWcEaqtkNGQGwvPsnYitpv-ns	14
fus1	(443)	viqDyepr	It DE	-irislGekukil-atl	htdgWclvqkcNtQk-GsihvSvddkryIn	6,7
cdc25	(64)	AayDFnyp	ikkdsssq	ILsvqqGetiyiI-NK	nssgWWdGlviddsMGkvrGwFPqnfgrplrds	15
Consensus		ALYDY	0	-Ф-Ф60-Ф-Ф	ИИGФФРYФ	
		FF	E	Ε	F	

Upper-case letters denote identity with the myosin-IB sequence. The amino-acid number of the first residue of each sequence is given in parentheses, ϕ signifies hydrophobic residues. The PIR database was searched using the programs Prosearch (J. Collins and A. Coulson, University of Edinburgh) on an AMT DAP, and AMPS (G. Barton and M.J.E.S.) on a VAX 8700; the Genepro program (Riverside Scientific, Seattle) was used to search the EMBL database.

plasmic proteins, many of which are associated with the plasma membrane (see figure). This domain, called SH3 or the Abox, was first described as a region of sequence similarity between the nonreceptor protein-tyrosine kinases, the 148K phospholipase C (PLC), and the v-crk oncogene of the avian sarcoma virus CT10 (refs 3 and 4). It was subsequently found in the α -chain of the non-erythroid spectrin homologue, fodrin5.

Our database searches have also

Retrocitation

SIR-In my News and Views article "Reverse Transcriptases. Retrons in Bacteria" (ref. 1) I stated "no such reverse transcriptase seemed to exist in bacteria". M. Beljanski has since called my attention to his publications on reverse transcriptase in bacteria2-5. This work was confirmed in several Soviet publications⁶⁻⁹. It will be of interest to see if these activities are related to retrons.

HOWARD M. TEMIN

McArdle Laboratory. University of Wisconsin, Madison, Wisconsin 53706, USA

- 1 Temin, H.M. Nature 339, 254-255 (1989).
- Beljanski, M. C. r. hebd. Séanc. Acad. Sci., Paris D274. 2801-2804 (1972).
- Beljanski, M. C. r. hebd. Séanc. Acad. Sci., Paris D276. 1625-1628 (1973).
- Beljanski, M. & Beljanski, M. Biochem. Genet. 17, 163–180 (1974).
- Beljanski, M., Bourgarel, P. & Beljanski, M.S. C. r. hebd. Séanc, Acad. Sci., Paris D**286**, 1825—1828 (1978). 6. Romashchenko, A.G. et al. Dokl. Akad. Nauk SSSR **233**,
- 734-737 (1977). Lushnikova, T.P. et al. Molec. Biol. 12, 1163-1171
- Vorob'eva, N.V. et al. Molec. Biol. 16, 977-983 (1982).
- 9. Grabkina, O.A. et al. Molec. Biol. 17, 830-838 (1983).

ICRF Laboratory, Lincoln's Inn Fields,

- Lynch, T. et al. J. biol. Chem. 261, 17156 (1986).
- Marth, J., Pect, R., Krebs, E. & Perlmutter, R. Cell 43, 10. 393-404 (1985).
- Sukegawa, J. et al. Molec. cell. Biol. 7, 41-47 (1987). **15**. 9600 (1987).
- Shtivelman, E., Lifshitz, B., Gale, R., Roe, B. & Canaani, E. *Cell* **47**, 277–284 (1986).

15. Broek, D. et al. Cell 48, 789-799 (1987).

What are males good for?

SIR-Successful rearing of young in most birds requires the care of two adults. Such parental pairs are almost always a male and a female, but the discovery of female/female pairings in one tern, one goose and several gull species, discussed by Jared Diamond¹, demonstrates that other parental pairing combinations are possible. Female/female pairs are, nevertheless, rare even in these few species²⁻⁶. Determining the reasons why they are so uncommon may help to formulate answers for the old question 'What are males good for?'

The most obvious benefit to females of pairing with a male - access to a source of sperm - is probably not of primary importance, as females paired together still copulate with unmated and mated males7. Female/female pairs, therefore, produce fertile eggs, although their fertility rates may be less than those of male/female pairs +-6

Perhaps a more important advantage provided by males is that of a territory. Female birds are generally smaller than males, and may, therefore, be at a disadvantage when competing against a male for a territory. In all the colonies where I have found female/female pairs or the unusually large (5-7 egg) clutches that result from them^{2.8} (eight ring-billed gull colonies, four California gull colonies and a Caspian tern colony), space for more nesting pairs was available on the nesting islands. In western gulls, female/female pairs were found in one colony where there was little competition for breeding space, but no such pairs were found in another colony where breeding space was limited9.

Probably the most important advantage a female derives from pairing with a male is the opportunity to raise only her own young (nest parasitism aside). By contrast, each female in a homosexual pair will contribute, on average, only half the young. An unrelated pair of females must, therefore, produce twice the offspring of a heterosexual pair before the reproductive output of each homosexually paired female equals that of a

- London, WC2A 3PX, UK Adams, R. & Pollard, T. Nature 340, 565-568 (1989).
- Jung, G., Korn, E. & Hammer, J. Proc. natn. Acad. Sci. U.S.A. 84, 6720-6724 (1987).
- Stahl, M., Ferenz, C., Kelleher, K., Kriz, R. & Knopf, J. *Nature* **332**, 269–272 (1988). Mayer, B., Hamaguchi, M., & Hanafusa, H. Nature 332,
- 272-274 (1988) Wasenius, V. et al. J. cell. Biol. 108, 79-93 (1989)
- Truehart, J., Boeke, J. & Fink, G. Molec. cell. Biol. 7, 2316–2328 (1987).
- McCaffrey, G., Clay, F., Kelsay, K. & Sprague, G. Molec. cell. Biol. 7, 2680-2690 (1987).
- Katamine, S., et al. Molec. cell. Biol. 8, 259-266 (1988).
- Klemsz, M., McKercher, S. & Maki, R. Nucleic Acids Res
- Takeya, T. & Hanafusa, H. Cell 32, 881-890 (1983).
- (1983). Quinn, T.W. et al. Auk 106, 177-184 (1989)
- Fitch, M.A. & Shugart, G.W. Am. Nat. 124, 116-126 (1984).

Hunt, G.L. Jr & Hunt, M.W. Science 196, 1466-1467

Kovacs, K.M. & Ryder, J.P. Auk 100, 658-669

- Conover, M.R. Condor 85, 346-349 (1983).
- Pierotti, R. Auk **98**, 532-549 (1981). Lagrenade, M. & Mousseau, P. Auk **100**, 658-669

1. Diamond, J.M. Nature 340, 101 (1989). Conover, M.R. Condor **86**, 467–471 (1984). Conover, M.R. Wilson Bull. **96**, 249–267 (1984)

(1977).

- Hunt, G.L. Jr et al. Auk 97, 473-479 (1980)
- Conover, M.R. & Hunt, G.L. Jr Condor 86, 472-476 (1984).Copover, M.R. & Hunt, G.L. Jr Wilson Bull, 96, 619-625

NATURE · VOL 342 · 7 DECEMBER 1989