Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The conformation of the DNA double helix in the crystal is dependent on its environment

Abstract

STUDIES of the crystal structures of more than 30 synthetic DNA fragments have provided structural information about three basic forms of the double helix: A-, B- and Z-form DNA1–5. These studies have demonstrated that the DNA double helix adopts a highly variable structure which is related to its base sequence. The extent to which such observed structures are influenced by the crystalline environment can be found by studying the same molecule in different crystalline forms. We have recently crystallized one particular oligomer in various crystal forms. Here we report the results of structural analyses of the different crystal structures and demonstrate that the DNA double helix can adopt a range of conformations in the crystalline state depending on hydration, molecular packing and temperature. These results have implications on our understanding of the influence of the environment on DNA structure, and on the modes of DNA recognition by proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shakked, Z. & Kennard, O. in Biological Macromolecules and Assemblies: Nucleic Acids and Interactive Proteins Vol. 2 (eds Jurnak, F. A. & McPherson, A.) 1–36. (Wiley, New York, 1985).

    Google Scholar 

  2. Dickerson, R. E., Kopka, K. L. & Pjura, P. in Biological Macromolecules and Assemblies: Nucleic Acids and Interactive Proteins Vol. 2 (eds Jurnak, F. A. & McPherson, A.) 38–126 (Wiley, New York, 1985).

    Google Scholar 

  3. Wang, A. H.J-. & Rich, A. in Biological Macromolecules and Assemblies: Nucleic Acids and Interactive Proteins Vol. 2 (eds Jurnak, F. A. & McPherson, A.) 128–170 (Wiley, New York, 1985).

    Google Scholar 

  4. Shakked, Z. & Rabinovich, D. Progr. Biophys. molec. Biol. 47, 159–195 (1986).

    Article  CAS  Google Scholar 

  5. Haran, T. E. & Shakked, Z. J. molec. Struct. 179, 367–391 (1988).

    Article  Google Scholar 

  6. Rabinovich, D., Haran, T. E., Eisenstein, M. & Shakked, Z. J. molec. Biol. 200, 151–161 (1988).

    Article  CAS  Google Scholar 

  7. Eisenstein, M. et al. Acta crystallogr. B44, 625–628 (1988).

    Article  Google Scholar 

  8. Shakked, Z. et al. Proc. R. Soc. B213, 479–487 (1981).

    ADS  CAS  Google Scholar 

  9. Haran, T. E., Shakked, Z., Wang, A., & Rich, A. J. biomolec. Struct. Dynam. 5, 199–217 (1987).

    Article  CAS  Google Scholar 

  10. Wang, A. H.-J., Fujii, S., van Boom, J. H. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 79, 3968–3972 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Haran, T. E. thesis, Feinberg Grad. Sch. Weizmann Inst. Sci. (1986).

  12. Heinemann, U., Lauble, H., Frank, R. & Blocker, H. Nucleic Acids Res.

  13. von Hippel, P. H. & Berg, O. G. Proc. natn. Acad. Sci. U.S.A. 83, 1608–1612 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Otwinowski, Z. et al. Nature 335, 321–329 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Beaucage, S. L. & Caruthers, M. H. Tetrahedron Lett. 2, 1859–1862 (1981).

    Article  Google Scholar 

  16. Hope, H. Acta Crystallogr. B44, 22–26 (1988).

    Article  Google Scholar 

  17. Rabinovich, D. & Shakked, Z. Acta crystallogr. A40, 195–200 (1984).

    Article  Google Scholar 

  18. Hendrickson, W. A. & Konnert, J. H. in Biomolecular Structure, Conformation, Function and Evolution Vol. 1 (eds Srinivasan, R. Subramanian, E. & Yatindra, N.) 43–57 (Pergamon, Oxford, 1981).

    Book  Google Scholar 

  19. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  20. Dickerson, R. E. et al. EMBO J. 8, 1–4 (1989).

    Article  Google Scholar 

  21. Jain, S. & Sundaralingam, M. J. J. biol. Chem. 264, 12780–12784 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakked, Z., Guerstein-Guzikevich, G., Eisenstein, M. et al. The conformation of the DNA double helix in the crystal is dependent on its environment. Nature 342, 456–460 (1989). https://doi.org/10.1038/342456a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342456a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing