Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germ-line transmission of a disrupted β2microglobulin gene produced by homologous recombination in embryonic stem cells

Abstract

MAJOR histocompatibility complex (MHC) class I molecules are integral membrane proteins present on virtually all vertebrate cells and consist of a heterodimer between the highly polymorphic α-chain and the β2microglobulin (β2-m) protein of relative molecular mass 12,000 (ref. 1). These cell-surface molecules play a pivotal part in the recognition of antigens, the cytotoxic response of T cells, and the induction of self tolerance1,2. It is possible, however, that the function of MHC class I molecules is not restricted to the immune system, but extends to a wide variety of biological reactions including cell–cell interactions. For example, MHC class I molecules seem to be associated with various cell-surface proteins, including the receptors for insulin, epidermal growth factor, luteinizing hormone and the β-adrenergic receptor3–6. In mice, class I molecules are secreted in the urine and act as highly specific olfactory cues which influence mating preference7, 8. The β2-m protein has also been identified as the smaller component of the Fc receptor in neonatal intestinal cells9, and it has been suggested that the protein induces collagenase in fibrob-lasts10. Cells lacking β2-m are deficient in the expression of MHC class I molecules, indicating that the association with β2-m is crucial for the transport of MHC class I molecules to the cell surface1. The most direct means of unravelling the many biological functions of β2-mis to create a mutant mouse with a defective β2-mgene. We have now used the technique of homologous recombination to disrupt the β2-mgene. We report here that introduction of a targeting vector into embryonic stem cells resulted in β2-mgene disruption with high frequency. Chimaeric mice derived from blastocysts injected with mutant embryonic stem cell clones transmit the mutant allele to their offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klein, J., Juretic, A., Baxevanis, C. N. & Nagy, Z. A. Nature 291, 455–460 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Zinkernagel, R. M. & Doherty, P. C. Adv. Immun. 27, 51–117 (1979).

    Article  CAS  Google Scholar 

  3. Fehlmann, M. et al. Proc. natn. Acad. Sci. U.S.A. 82, 8634–8637 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Due, C., Simonsen, M. & Olsson, L. Proc. natn. Acad. Sci. U.S.A. 83, 6007–6011 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Schreiber, A. B., Schlessinger, J. & Edidin, M. J. cell. Biol. 98, 725–731 (1984).

    Article  CAS  Google Scholar 

  6. Solano, A. R. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5087–5091 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Singh, P. B., Brown, R. E. & Roser, B. Nature 327, 161–164 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Yamazaki, K. et al. Science 240, 1331–1332 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Simister, N. E. & Mostov, K. E. Nature 337, 184–187 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Brinckerhoff, C. E., Mitchell, T. I., Karmilowicz, M. J., Kluve-Beckerman, B. & Benson, M. D. Science 243, 655–657 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Nature 323, 445–448 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Gossler, A., Doetschman, T., Korn, R., Serfling, E. & Kemler, R. Proc. natn. Acad. Sci. U.S.A. 83, 9065–9069 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  14. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Doetschman, T., Maeda, N. & Smithies, O. Proc. natn. Acad. Sci. U.S.A. 85, 8583–8587 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Joyner, A. L., Skarnes, W. C. & Rossant, J. Nature 338, 153–156 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Zimmer, A. & Gruss, P. Nature 338, 150–153 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. Cell 56, 313–321 (1989).

    Article  CAS  Google Scholar 

  19. Rudnicki, M. A. & McBurney, M. W. in Teratocarcinomas and Embryonic Stem Cells (ed. Robertson, E. J.) 19–49 (IRL, Oxford, 1987).

    Google Scholar 

  20. Potter, T. A., Frankel, W., Zeff, R. A. & Rajan, T. V. J. Immun. 138, 1270–1274 (1987).

    CAS  PubMed  Google Scholar 

  21. Croce, C. M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 5754–5758 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Bradley, A., Evans, M., Kaufman, M. & Roberston, E. Nature 309, 255–256 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Sawicki, J. A., Magnuson, T. & Epstein, C. J. Nature 294, 450–451 (1981).

    Article  ADS  CAS  Google Scholar 

  24. William, R. L. et al. Nature 336, 684–587 (1988).

    Article  ADS  Google Scholar 

  25. Johnson, R. et al. Science 245, 1234–1236 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijlstra, M., Li, E., Sajjadi, F. et al. Germ-line transmission of a disrupted β2microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989). https://doi.org/10.1038/342435a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342435a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing