Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photoisomerization of OCIO: a possible mechanism for polar ozone depletion

Abstract

CONNECTIONS between polar ozone depletion and halocarbon chemistry have been established by a number of studies1–10. Recent attempts to account quantitatively for the observed rate of ozone decline in Antarctica in terms of known photochemical processes have not been entirely successful, and it seems that further chemical ozone-depleting mechanisms may be needed, particularly if the transport of ozone into the polar regions competes with chemical losses. Spectroscopic and photochemical data indicate that photolysis of OCIO may provide a further ozone loss mechanism that has not previously been considered. Here we report laboratory studies of OCIO spectroscopy and photoproducts which suggest that atomic Cl and O2 are formed to some extent in the photodis-sociation process. This evidence points towards possible photo-isomerization to the unstable species ClOO, (or at least to a similar metastable intermediate) probably by way of the 2B2 excited state of OClO, thus reinforcing the idea that photolysis of OC1O may contribute to polar ozone depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207–210 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Stolarski, R. S. et al. Nature 322, 808–811 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Hofmann, D. J., Harder, J. W., Rolf, S. R. & Rosen, J. M. Nature 326, 59–62 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Gardiner, B. G. & Shanklin, J. D. Geophys. Res. Lett. 13, 1199–1201 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. Nature, 321, 755–758 (1986).

    Article  ADS  CAS  Google Scholar 

  6. McElroy, M. B., Salawitch, R. J., Wofsy, S. C. & Logan, J. A. Nature 321, 759–762 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Crutzen, P. J. & Arnold, F. Nature 324, 651–655 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Barrett, J. W. et al. Nature 336, 455–458 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Anderson, J. G., Brune, W. R. & Chan, R. J. geophys. Res. 94, 11480–11520 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Jones, R. L. et al. J. geophys. Res. 94, 11529–11558 (1989).

    Article  ADS  Google Scholar 

  11. Sander, S., Friedl, R. & Yung, Y. Science 245, 1095–1097 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Pyle, J. A. Geophys. Res. Lett. 13, 1320–1322 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Tuck, A. F. J. geophys. Res. 94, 11687–11737 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Coon, J. B. & Ortiz, E. J. molec. Spectrosc. 1, 81–94 (1957).

    Article  ADS  CAS  Google Scholar 

  15. Wahner, A., Tyndall, G. S. & Ravishankara, A. R. J. phys. Chem. 91, 2734–2738 (1987).

    Article  CAS  Google Scholar 

  16. Brand, J. C. D., Redding, R. W. & Richardson, A. W. J. molec. Spectrosc. 34, 399–414 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Gole, J. L. J. Phys. Chem. 84, 1333–1340 (1980).

    Article  CAS  Google Scholar 

  18. Michielsen, S. et al. J. chem. Phys. 74, 3089–3101 (1981).

    Article  ADS  CAS  Google Scholar 

  19. McDonald, P. A. & Innes, K. K. Chem. Phys. Lett. 59, 562–566 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Richard, E. C., Wickham-Jones, C. T. & Vaida, V. J. phys. Chem. 93, 6346–6350 (1989).

    Article  CAS  Google Scholar 

  21. Lipscomb, F. J., Norrish, R. G. W. & Thrush, B. A. Proc. R. Soc. A 233, 455–464 (1956).

    ADS  CAS  Google Scholar 

  22. Bethune, D. S., Schell-Sorokin, A. J., Lankard, J. R., Loy, M. M. T. & Sorokin, P. P. in Advances in Laser Spectroscopy. Vol. 2 (eds Garetz, B. A. & Lombardi, J. R.) (Wiley Chichester, 1983).

    Google Scholar 

  23. Glownia, J. H., Misewich, J. & Sorokin, P. P. in Supercontinuum Laser Sources (ed. Alfano, R. R. (Springer, Berlin, in the press).

  24. Hayman, G. D. & Cox, R. A. Chem. Phys. Lett. 155, 1–7 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Colussi, A. J., Redmond, R. W. & Scaiano, J. C. J. phys. Chem. 93, 4783–4785 (1989).

    Article  CAS  Google Scholar 

  26. Hodges, R. V., Lee, L. C. & Moseley, J. T. Int. J. Mass Spectrom. Ion Phys. 39, 133–143 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Arkell, A. & Schwager, I. J. Am. chem. Soc. 89, 5999–6006 (1967).

    Article  CAS  Google Scholar 

  28. Adrian, F. J., Bohandy, J. & Kim, B. F. J. chem. Phys. 85, 2692–2698 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Donaldson, D. J., Gaines, G. A. & Vaida, V. J. phys. Chem. 92, 2766–2769 (1988).

    Article  CAS  Google Scholar 

  30. Sapers, S. P., Vaida, V. & Naaman, R. J. chem. Phys. 88, 3638–3645 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Donaldson, D. J., Richard, E. C., Strickler, S. J. & Vaida, V. J. phys. Chem. 92, 5514–5517 (1988).

    Article  CAS  Google Scholar 

  32. Donaldson, D. J., Child, M. S. & Vaida, V. J. chem. Phys. 88, 7410–7417, (1988).

    Article  ADS  CAS  Google Scholar 

  33. Vaida, V., Donaldson, D. J., Sapers, S. P., Naaman, R. & Child, M. S. J. phys. Chem. 93, 513–520 (1989).

    Article  CAS  Google Scholar 

  34. Prinslow, D. A. & Vaida, V. J. phys Chem. 93, 1836–1840 (1989).

    Article  CAS  Google Scholar 

  35. Solomon, S., Mount, G. H., Sanders, R. W. & Schmeltekopf, A. L. J. geophys. Res. 92, 8329–8338 (1987).

    Article  ADS  CAS  Google Scholar 

  36. Solomon, S., Sanders, R. W., Carroll, M. A. & Schmeltekopf, A. L. J. geophys. Res. 94, 11393–11404 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaida, V., Solomon, S., Richard, E. et al. Photoisomerization of OCIO: a possible mechanism for polar ozone depletion. Nature 342, 405–408 (1989). https://doi.org/10.1038/342405a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342405a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing