Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pre-biotic organic matter from comets and asteroids

Abstract

SEVERAL authors1–3 have suggested that comets or carbonaceous asteroids contributed large amounts of organic matter to the primitive Earth, and thus possibly played a vital role in the origin of life. But organic matter cannot survive the extremely high temperatures (> 104 K) reached on impact, which atomize the projectile and break all chemical bonds. Only fragments small enough to be gently decelerated by the atmosphere—principally meteors of 10−12–10−6 g—can deliver their organic matter intact4. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only ~0.006 g cm−2 intact organic carbon would accumulate in 108 yr, but at the higher rates of ~4 x 109 yr ago, about 20 g cm−2 may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on Earth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Oró, J. Nature 190, 389–390 (1961).

    Article  ADS  Google Scholar 

  2. Delsemme, A. H. Origins Life 14, 51–60 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Deamer, D. W., Brack, A., Morowitz, H., Weber, A. & Usher, D. Origins Life (in the press).

  4. Anders, E., Hayatsu, R. & Studier, M. H. Science 182, 781–790 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Kyte, F. T. & Wasson, J. T. Science 232, 1225–1229 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Hughes, D. W. in Cosmic Dust (ed. McDonnell, J. A. M.) 123–185 (Wiley, New York, 1978).

    Google Scholar 

  7. Dohnanyi, J. S. Science 173, 558 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Barker, J. L. & Anders, E. Geochim. cosmochim. Acta 32, 627–645 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Anders, E., Ganapathy, R., Krähenbühl, U. & Morgan, J. W. The Moon 8, 3–24 (1973).

    Article  ADS  Google Scholar 

  10. Shoemaker, E. M. A. Rev. Earth planet. Sci. 11, 461–494 (1983).

    Article  ADS  Google Scholar 

  11. Brownlee, D. E. A. Rev. Earth planet. Sci. 13, 189–215 (1985).

    Article  Google Scholar 

  12. Sears, D. W. Mod. Geol. 5, 155–164 (1975).

    ADS  Google Scholar 

  13. Baldwin, B. & Shaeffer, Y. J. geophys. Res. 76, 4653–4668 (1971).

    Article  ADS  Google Scholar 

  14. Schramm, L. S., Brownlee, D. E. & Wheelock, M. M. Meteoritics 24, 99–112 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Jessberger, E. K., Christoforidis, A. & Kissel J. Nature 332, 691–695 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Weissman, P. R. Geol. Soc. Am. Spec. Pap. 190, 15–24 (1982).

    Google Scholar 

  17. Wetherill, G. W. & ReVelle, D. O. Icarus 48, 308–328 (1981).

    Article  ADS  Google Scholar 

  18. Wetherll, G. W. Phil. Trans. R. Soc. A323, 323–337 (1987).

    Article  ADS  Google Scholar 

  19. Wetherill, G. W. & Shoemaker, E. M. Geol. Soc. Am. Spec. Pap. 190, 1–13 (1982).

    Google Scholar 

  20. Palme, H., Grieve, R. A. F. & Wolf, R. Geochim. cosmochim. Acta 45, 2417–2424 (1981).

    Article  ADS  CAS  Google Scholar 

  21. ReVelle, D. O. J. J. atmos. terr. Phys. 41, 453–473 (1979).

    Article  ADS  Google Scholar 

  22. Mason, B. Principles of Geochemistry 3rd edn (Wiley, New York, 1966).

    Google Scholar 

  23. Anders, E. Acct. chem. Res. 1, 289–298 (1968).

    Article  CAS  Google Scholar 

  24. Turekian, K. K. & Clark, S. P. Jr. Earth planet. Sci. Lett. 6, 346–348 (1969).

    Article  ADS  CAS  Google Scholar 

  25. Anders, E. & Owen, T. Science 198, 453–465 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Matsui, T. & Abe, Y. Nature 322, 526–528 (1986).

    Article  ADS  Google Scholar 

  27. Zahnle, K. J., Kasting, J. F. & Pollack, J. B. Icarus 74, 62–97 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Hayatsu, R. & Anders, E. Topics curr. Chem. 99, 1–37 (1981).

    Article  CAS  Google Scholar 

  29. Gradie, J. & Tedesco, E. Science 216, 1405–1407 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Morgan, J. W. J. geophys. Res. 91, 12375–12387 (1986).

    Article  ADS  Google Scholar 

  31. Kimura, K., Lewis, R. S. & Anders, E. Geochim. cosmochim. Acta 38, 683–701 (1974).

    Article  ADS  CAS  Google Scholar 

  32. Morgan, J. W., Wandless, G. A., Petrie, R. K. & Irving, A. J. Tectonophys. 75, 47–67 (1981).

    Article  ADS  CAS  Google Scholar 

  33. Chyba, C. F. Nature 330, 632–635 (1987).

    Article  ADS  Google Scholar 

  34. Ip, W.-H. & Fernandez, J. A. Icarus 74, 47–61 (1988).

    Article  ADS  CAS  Google Scholar 

  35. Gros, J., Takahashi, H., Hertogen, J., Morgan, J. W. & Anders, E. Proc. Lunar Sci. Conf. 7, 2403–2435 (1976).

    ADS  CAS  Google Scholar 

  36. Hertogen, J., Janssens M.-J., Takahashi, H., Palme, H. & Anders, E. Proc Lunar Sci. Conf. 8, 17–45 (1977).

    ADS  CAS  Google Scholar 

  37. Chapman, C. R. & Davis, D. R. Science 190, 553–556 (1975).

    Article  ADS  Google Scholar 

  38. Stribling, S. & Miller, S. L. Origins Life 17, 261–273 (1987).

    Article  ADS  CAS  Google Scholar 

  39. Deamer, D. W. Nature 317, 792–794 (1985).

    Article  ADS  CAS  Google Scholar 

  40. Mullie, F. & Reisse, J. Topics curr. Chem. 139, 83–117 (1987).

    Article  CAS  Google Scholar 

  41. Cronin, J. R., Pizzarello, S. & Cruikshank, D. P. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 819–857 (Univ. Arizona Press, 1988).

    Google Scholar 

  42. Thomas, P. J., Chyba, C. F., Brookshaw, L. & Sagan, C. Lunar planet. Sci. 20, 1117–1118 (1989).

    ADS  Google Scholar 

  43. Öpik, E. J. in Proc. Geophys. Lab. Lawrence Radiation Lab. Cratering Symp., Rep. UCRl-6438, 2, Paper S. 1–28 (Lawrence Radiation Lab., Berkeley, 1961).

    Google Scholar 

  44. Zhao, M. & Bada, J. L. Nature 339, 463–465 (1989).

    Article  ADS  CAS  Google Scholar 

  45. Wolbach, W. S., Lewis, R. S. & Anders, E. Science 230, 167–170 (1985).

    Article  ADS  CAS  Google Scholar 

  46. Lewis, R. S. & Wolbach, W. S. Meteoritics 21, 434–435 (1986).

    ADS  Google Scholar 

  47. Hudson, B., Flynn, G. J., Fraundorf, P., Hohenberg, C. M. & Shirck, J. Science 211, 383–386 (1981).

    Article  ADS  CAS  Google Scholar 

  48. Emiliani, C., Kraus, E. B. & Shoemaker, E. M. Earth planet. Sci. Lett. 55, 317–334 (1981).

    Article  ADS  Google Scholar 

  49. Turco, R. P. et al. Icarus 50, 1–52 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, E. Pre-biotic organic matter from comets and asteroids. Nature 342, 255–257 (1989). https://doi.org/10.1038/342255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing