Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation

Abstract

THERE has been considerable controversy about the magnitude of fluctuations of the levels of Lake Tanganyika, the Earth's second deepest lake (1,470 m), following the discovery of submerged valleys extending down to 550 m below present lake levels1. These fluctuations register changes in the precipitation/(evaporation + evapotranspiration) ratio in a large equatorial–tropical area of catchment, south of the Equator. Here we report new palaeohydrological data, back to 40 kyr BP, from carbon dating of the total organic matter in two diatomaceous cores. The results constrain the vertical lake level fluctuations more than has hitherto been possible2–5 and show that the fluctuations from 26 kyr BP are correlated with changes in global sea level and ice volume. Surpris-ingly fluctuations seem to be in phase with those of the African lakes north of the Equator, which are clearly linked to the Milankovitch mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Capart, A. Exploration hydrobiologique du Lac Tanganyika (1946–47), vol. 2, 1–16 (Inst. R. Sci. Nat. Belg., Bruxelles, 1949).

    Google Scholar 

  2. Livingstone, D. A. Limnol. Oceanogr. 10, 607–610 (1965).

    Article  ADS  Google Scholar 

  3. Haberyan, K. A. & Hecky, R. E. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 169–197 (1987).

    Article  CAS  Google Scholar 

  4. Tiercelin, J. J. et al. C. R. hebd. Séanc. Acad. Sci., Paris 307, 1375–1382 (1988).

    Google Scholar 

  5. Scholz, C. A. & Rosendahl, C. A. Science 240, 1645–1648 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Degens, E. T., Van Herzen, R. P. & Wong, H. K. Naturwissenschaften 58, 229–251 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Stoffers, P. & Hecky, R. E. in Int. Ass. Sedimentol., Spec. pub. 2, 43–55 (1978).

    Google Scholar 

  8. Hecky, R. E. & Degens, E. T. Woods Hole Oceanographic Institution, Tech. Rep. 73–78 (1978).

  9. Beadle, L. C. The Inland Waters of Tropical Africa (Longman, London, 1981).

    Google Scholar 

  10. Deines, P. in Handbook of Environmental Isotope Geochemistry Vol. 1 (eds Fritz, P. & Fontes, J. Ch.) 329–406 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  11. Stuiver, M. & Polach, H. A. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  12. Hustedt, F. in Das Phytoplankton des Süsswassers Vol. 16 (ed. Thiennemann, A.) (Schweizerbart, Stuttgart, 1942).

    Google Scholar 

  13. Gasse, F. in Bibliotheca Diatomologica Vol. 11 (Cramer, Stuttgart, 1986).

    Google Scholar 

  14. Gasse, F. & Street, F. A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 24, 279–325 (1978).

    Article  Google Scholar 

  15. Gasse, F. Nature 2, 42–45 (1977).

    Article  ADS  Google Scholar 

  16. Vincens, A. Palaeobotany and Palynology (Elsevier, Amsterdam, in the press).

  17. Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Nature 367, 477–482 (1987).

    Article  ADS  Google Scholar 

  18. Bard, E. et al. 328, 791–794 (1987).

  19. Berger, W. H., Killingley, J. S. & Vincent, E. Nature 314, 156–158 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Street-Perrott, F. A. & Roberts, N. in Variations in the Global Water Budget (eds Street-Perrott, F. A. et al.) 331–445 (Reidel, Dordrecht, 1983).

    Google Scholar 

  21. Kutzbach, J. E. & Street-Perrott, F. A. Nature 317, 2130–2134 (1985).

    Article  Google Scholar 

  22. Berger, A. J. atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  23. COHMAP Members. Science 241, 1043–1052 (1988).

  24. Hillaire-Marcel, C. et al. Quat. Sci. Rev. 8, 206–211 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasse, F., Lédée, V., Massault, M. et al. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342, 57–59 (1989). https://doi.org/10.1038/342057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing