Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation

Abstract

The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors that is predominantly expressed in adipose tissue, adrenal gland and spleen1,2,3. PPAR-γ has been demonstrated to regulate adipocyte differentiation and glucose homeostasis in response to several structurally distinct compounds, including thiazolidinediones and fibrates3,4,5,6. Naturally occurring compounds such as fatty acids and the prostaglandin D2 metabolite 15-deoxy-Δ12,14prostaglandin J2 (15d-PGJ2) bind to PPAR-γ and stimulate transcription of target genes7,8,9,10. Prostaglandin D2metabolites have not yet been identified in adipose tissue, butaremajor products of arachidonic-acid metabolism in macrophages11, raising the possibility that they might serve as endogenous PPAR-γ ligands in this cell type. Here we show that PPAR-γ is markedly upregulated in activated macrophages and inhibits the expression of the inducible nitric oxide synthase, gelatinase B and scavenger receptor A genes in response to 15d-PGJ2 and synthetic PPAR-γ ligands. PPAR-γ inhibits gene expression in part by antagonizing the activities of the transcription factors AP-1, STAT and NF-κB. These observations suggest that PPAR-γ and locally produced prostaglandin D2 metabolites are involved in the regulation of inflammatory responses, and raise the possibility that synthetic PPAR-γ ligands may be of therapeutic value in human diseases such as atherosclerosis and rheumatoid arthritis in which activated macrophages exert pathogenic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophage expression of PPAR-γ and inhibition of iNOS and gelatinase B gene expression by 15d-PGJ2.
Figure 2: 15d-PGJ2 inhibits the gelatinase B, SR-A and iNOS promoters in a PPARγ-dependent manner.
Figure 3: iNOS promoter activity is inhibited by prostaglandin D2 metabolites and synthetic PPAR-γ ligands.
Figure 4: 15-dPGJ2 inhibits transcriptional responses mediated by AP-1, Stat1 and NF-κB transcription factors.

Similar content being viewed by others

References

  1. Kliewer, S. A. et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 91, 7355–7359 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lemberger, T., Desvergne, B. & Wahli, W. PPARs: a nuclear receptor signaling pathway in lipid metabolism. Annu. Rev. Cell Dev. Biol. 12, 335–363 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome prolifereator-activated receptor gamma (PPARgamma). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Willson, T. M. et al. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39, 665–668 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kliewer, S. A. et al. Aprostaglandin J2metabolite binds peroxisome proliferator-activated receptorγ and promotes adipocyte differentiation. Cell 83, 813–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Forman, B. M. et al. 15-Deoxy-Δ12,14-prostaglandin J2is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Kliewer, S. A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krey, G. et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Urade, Y., Ujihara, M., Horiguchi, Y., Ikai, K. & Hayaishi, O. The major source of endogenous prostaglandin D2production is likely antigen-presenting cells. J. Immunol. 143, 2982–2989 (1989).

    CAS  PubMed  Google Scholar 

  12. Lowenstein, C. J. et al. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc. Natl Acad. Sci. USA 90, 8730–9734 (1993).

    Article  Google Scholar 

  13. Hawke, R. L. et al. Potent hypocholesterolemic activity of novel ureido phenoxyisobutyrates correlates with their intrinsic fibrate potency and not with their ACAT inhibitory activity. J. Lipid Res. 38, 1189–1203 (1997).

    ADS  CAS  PubMed  Google Scholar 

  14. Matrisian, L. M. The matrix degrading metalloproteinases. BioEssays 14, 455–463 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Welgus, H. G., Campbell, E.. J. & Cury, J. D. Neutral metalloproteinases produced by human mononuclear phagocytes. J. Clin. Invest. 86, 1496–1502 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greene, M. E. et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Express. 4, 281–299 (1995).

    CAS  Google Scholar 

  17. Saarialho-Kere, U. K., Welgus, H. G. & Parks, W. C. Distinct mechanisms regulate interstitial collagenase and 92-kDa gelatinase expression in human monocytic-like cells exposed to bacterial endotoxin. J. Biol. Chem. 268, 17354–17361 (1993).

    CAS  PubMed  Google Scholar 

  18. Sato, H. & Seiki, M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395–405 (1993).

    CAS  PubMed  Google Scholar 

  19. Krieger, M. & Herz, J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 601–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, H., Moulton, K., Horvai, A., Parik, S. & Glass, C. K. Combinatorial interactions between AP-1 and ets-domain proteins contribute to the developmental regulation of the macrophage scavenger gene. Mol. Cell. Biol. 14, 2129–2139 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie, Q. W., Whisnant, R. & Nathan, C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J. Exp. Med. 177, 1779–1784 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H. & Russell, S. W. Expression ofthe nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268, 1908–1913 (1993).

    CAS  PubMed  Google Scholar 

  23. Fanjul, A. et al. Anew class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature 372, 107–111 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Horvai, A. E. et al. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl Acad. Sci. USA 94, 1074–1079 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ausubel, F. et al. Current Protocols in Molecular Biology 1-0(John Wiley, New York, (1990)).

    Google Scholar 

  26. Green, L. C. et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Biochemistry 126, 131–138 (1982).

    CAS  Google Scholar 

  27. Zhu, Y., Pless, M., Inhorn, R., Mathey-Prevot, B. & D'Andrea, A. D. The murine DUB-1 gene is specifically induced by the βc subunit of the interleukin-3 receptor. Mol. Cell. Biol. 16, 4808–4817 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Archer for assistance with nitrate measurements, and T. Schneiderman for assistance with manuscript preparation. A.C.L. is supported by a Physician Scientist grant from the NIH. C.J.K. is a clinical investigator of the Medical Research Service, Department of Veterans Affairs. C.K.G. is an established investigator of the American Heart Association. These studies were supported by NIH grants to C.J.K. and C.K.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Glass.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricote, M., Li, A., Willson, T. et al. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998). https://doi.org/10.1038/34178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34178

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing