Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new self-organizing mechanism for deep-focus earthquakes

Abstract

THE mechanism of deep-focus earthquakes has been a puzzle since their discovery almost 70 years ago1, 2, because brittle fracture and frictional sliding at depths in excess of 100–200 km would require unrealistic rock strengths3, 4. Rock strength does increase with pressure, but a few hundred MPa (equivalent to 10–20 km depth) suffices to inhibit most fracture, and elevated temperature activates ductile mechanisms that operate at stresses less than the fracture stength. A range of mechanisms has been proposed for deep earthquakes, including plastic instabilities5–7, shear-induced melting8–11 and instabilities accompanying recrystallization12, 13 or polymorphic phase transformation14–23. Each of these proposed mechanisms has exhibited certain inherent weaknesses (see Kirby22 for review and discussion). Here we report experimental observations of high-pressure faulting of metastable Mg2GeO4 olivine as it undergoes incipient transformation to a spinel 24, 25 structure. We present a model in which this faulting arises from the generation, propagation and linking-up of spinel-filled anticracks26. When applied to the olivine → spinel transformation in the Earth's mantle, the anticrack model27 satisfactorily accounts for the similarities and differences between shallow and deep earthquakes and removes the problems associated with frictional sliding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turner, H. H. Mon. Not. R. astr. Soc., Geophys. Suppl. 1, 1–13 (1922).

    Article  ADS  Google Scholar 

  2. Wadati, K. Geophys. Mag. 1, 162–202 (1928).

    Google Scholar 

  3. Jeffreys, H. The Earth, Its Origin, History and Physical Constitution 2nd Edn (Cambridge University Press, 1929).

    MATH  Google Scholar 

  4. Jeffreys, H. Proc. R. Soc. Edinb. 56, 158–163 (1936).

    Article  Google Scholar 

  5. Bridgman, P. W. J. Geol. 44, 653–669 (1936).

    Article  ADS  CAS  Google Scholar 

  6. Orowan, E. Geol. Soc. Am. Mem. 79, 323–345 (1960).

    CAS  Google Scholar 

  7. Hobbs, B. E. & Ord, A. J. geophys. Res. 93, 10,521–10,540 (1988).

    Article  ADS  Google Scholar 

  8. Griggs, D. T. in Nature of the Solid Earth (ed. Robertson, E. C.) 361–384 (McGraw-Hill, New York, 1972).

    Google Scholar 

  9. Post, R. L. Jr Tectonophysics 42, 75–110 (1977).

    Article  ADS  Google Scholar 

  10. Griggs, D. T. in Modern Physics for the Engineer (ed. Ridenour, L. N.) 272–305 (McGraw-Hill, New York, 1954).

    Google Scholar 

  11. Griggs, D. T. & Handin, J. Geol. Soc. Am. Mem. 79, 347–373 (1960).

    CAS  Google Scholar 

  12. Griggs, D. T. & Baker, D. W. in Properties of Matter under Unusual Conditions, (eds Mark, H. & Fernback, S.) (Wiley Interscience, New York 1969).

    Google Scholar 

  13. Ogawa, M. J. geophys. Res. 92, 13,801–13,810 (1987).

    Article  ADS  Google Scholar 

  14. Bridgman, P. W. Am. J. Sci. 243A, 90–97 (1945).

    Google Scholar 

  15. Benioff, H. Bull. seism. Soc. Am. 53, 893–903 (1963).

    Google Scholar 

  16. Evison, F. F. Bull. seism. Soc. Am. 53, 873–891 (1963).

    Google Scholar 

  17. Evison, F. F. Bull. seism. Soc. Am. 57, 9–25 (1967).

    Google Scholar 

  18. Vaisnys, J. R. & Pilbeam, C. C. J. geophys. Res. 81, 985–988 (1976).

    Article  ADS  Google Scholar 

  19. Sung, C. M. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Liu, L. Phys. Earth planet Inter. 32, 226–240 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Hodder, A. P. W. Phys. Earth planet. Inter. 34, 221–225 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Kirby, S. H. J. geophys. Res. 92, 13,789–13,800 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Meade, C. & Jeanloz, R. Nature 339, 616–618 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Burnley, P. C. & Green, H. W. Eos 70, 473 (1989).

    Google Scholar 

  25. Burnley, P. C. & Green, H. W. J. geophys. Res. (submitted).

  26. Green, H. W. & Burnley, P. C. Eos 70, 473 (1989).

    Article  Google Scholar 

  27. Fletcher, R. & Pollard, D. D. Geology 9, 419–424 (1981).

    Article  ADS  Google Scholar 

  28. Burnley, P. C. & Green, H. W. Nature 338, 753–756 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Vaughan, P. J., Green, H. W. & Coe, R. S. Tectonophysics 108, 299–322 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Rispoli, R. Tectonophysics 75, T29–T36 (1981).

    Article  ADS  Google Scholar 

  31. Paterson, M. S. Experimental Rock Deformation—The Brittle Field (Springer, Berlin, 1973).

    MATH  Google Scholar 

  32. Petit, J.-P. & Barquins, M. Tectonics 7, 1243–1256 (1988).

    Article  ADS  Google Scholar 

  33. Vaughan, P. J. & Coe, R. S. J. geophys. Res. 86, 389–404 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Green, H. W. Geophys. Res. Lett. 11, 817–820 (1984).

    Article  ADS  Google Scholar 

  35. Bina, C. R. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).

    Article  ADS  CAS  Google Scholar 

  36. Frohlich, C. A. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  37. Turcotte, D. L. & Schubert, G. Geodynamics (Wiley, New York, 1982).

    Google Scholar 

  38. Sung, C.-M. in High Pressure Science and Technology Vol. 2 (eds Timmerhaus, K. D. & Barber M. S.) 31–42 (Plenum, New York, 1979).

    Google Scholar 

  39. Willeman, R. J. & Frohlich, C. J. geophys. Res. 92, 13,927–13,943 (1987).

    Article  ADS  Google Scholar 

  40. Sykes, L. R. J. geophys. Res. 71, 2981–3006 (1966).

    Article  ADS  Google Scholar 

  41. Raleigh, C. B. & Paterson, M. S. J. geophys. Res. 70, 3965–3985 (1965).

    Article  ADS  Google Scholar 

  42. Ross, N. & Navrotsky, A. Phys. Chem. Miner. 14, 473–481 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green II, H., Burnley, P. A new self-organizing mechanism for deep-focus earthquakes. Nature 341, 733–737 (1989). https://doi.org/10.1038/341733a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341733a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing