Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trans-dominant inactivation of HTLV-I and HIV-1 gene expression by mutation of the HTLV-I Rex transactivator

Abstract

THE rex gene of the type I human T-cell leukaemia virus (HTLV-I) encodes a phosphorylated nuclear protein of relative molecular mass 27,000 which is required for viral replication1–3. The Rex protein acts by promoting the cytoplasmic expression of the incompletely spliced viral messenger RN As that encode the virion structural proteins4,5. To identify the biologically important peptide domains within Rex, we introduced a series of mutations throughout its sequence. Two distinct classes of mutations lacking Rex biological activity were identified. One class corresponds to trans-dominant repressors as they inhibit the function of the wild-type Rex protein. The second class of mutants, in contrast, are recessive negative, rather than dominant negative, as they are not appropriately targeted to the cell nucleus. These results indicate the presence of at least two functionally distinct domains within the Rex protein, one involved in protein localization and a second involved in effector function. The trans-dominant Rex mutants may represent a promising new class of antiviral agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Inoue, J., Yoshida, M. & Seiki, M. Proc. natn. Acad. Sci. U.S.A. 84, 3653–3657 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Kiyokawa, T. et al. Proc. natn Acad. Sci. U.S.A. 82, 8359–8363 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Siemi, H. et al. Cell 55, 197–209 (1988).

    Article  Google Scholar 

  4. Hidaka, M., Inoue, J., Yoshida, M. & Seiki, M. EMBO J. 7, 519–523 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanly, S. et al. Genes Dev., in the press.

  6. Cullen, B. R. Cell 46, 973–982 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Seiki, M., Inoue, J., Hidaka, M. & Yoshida, M. Proc. natn. Acad. Sci. U.S.A. 85, 7124–7128 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Matsushita, S. et al. Proc. natn. Acad. Sci. U.S.A. 83, 2672–2676 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. Nature 338, 254–257 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hadzopoulou-Cladaras, M. et al. J. Virol. 63, 1265–1274 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fleber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T. & Pavlakis, G. N. Proc. natn. Acad. Sci. U.S.A. 86, 1495–1499 (1989).

    Article  ADS  Google Scholar 

  12. Gutman, D. & Goldenberg, C. J. Science 241, 1492–1495 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Emerman, M., Vazeux, R. & Peden, K. Cell 57, 1155–1165 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Rimsky, L. et al. Nature 335, 738–740 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Malim, M. H., Hauber, J., Fenrick, R. & Cullen, B. R. Nature 335, 181–183 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Triezenberg, S. J., Kingbury, R. C. & McKnight, S. L. Genes Dev. 2, 718–729 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Wachsman, W. et al. Science 235, 674–677 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Malim, M., Böhnlein, S., Hauber, J. & Cullen, B. R. Cell 58, 205–214 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Green, M., Ishino, M. & Loervenstein, P. M. Cell 58, 215–223 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Baltimore, D. Nature 335, 395–396 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Nakamaye, G. & Eckstein, F. Nucleic Acids Res. 14, 9679–9698 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seiki, M., Hattori, S., Hirayama, Y. & Yoshida, M. Proc. natn. Acad. Sci. U.S.A. 80, 3618–3622 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Cullen, B. R. Meth. Enzym. 152, 692–704 (1987).

    Google Scholar 

  24. Feinberg, M. R., Jarrett, R. F., Aldovini, A., Gallo, R. C. & Wong-Staal, F. Cell 46, 807–817 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimsky, L., Dodon, M., Dixon , E. et al. Trans-dominant inactivation of HTLV-I and HIV-1 gene expression by mutation of the HTLV-I Rex transactivator. Nature 341, 453–456 (1989). https://doi.org/10.1038/341453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing