Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a Bose–Einstein condensate in liquid 4He from quantum evaporation

Abstract

Bose–Einstein condensation (BEC) is a purely quantum phenomenon whereby a macroscopic number of identical atoms occupy the same single-particle state1. Interest in this phenomenon has grown considerably following the direct demonstration of BEC in low-density gases of alkali metal atoms2,3,4. It is therefore worth reconsidering the case of liquid 4He, which is generally accepted to have such a condensate5, but for which similarly direct evidence is lacking6. Nevertheless, theoretical models that depend on the existence of a condensate have proved successful at explaining many of the properties of this system7,8,9, and BEC is considered to underlie the striking phenomena of superfluidity and quantized vorticity observed in liquid 4He. So the current issue is not whether there is a condensate in this system, but how to demonstrate its existence in a clear and simple way. Here I argue that an earlier measurement10 of evaporation from liquid 4He caused by a collimated beam of phonons provides such a demonstration. The calculated angular distribution of evaporated atoms agrees well with that measured if it is assumed that the atoms initially had zero momentum parallel to the surface of the liquid—this is to be expected if the atoms originate from a condensate. This process of quantum evaporation also opens the possibility for creating beams of phase-coherent atoms of short wavelength.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of 4He.

Similar content being viewed by others

References

  1. Einstein, A. Sitzungsber K. Preuss. Akad. Wiss. 3–14 (1925).

    Google Scholar 

  2. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapour. Science 269, 198–201 (1995).

    Article  CAS  ADS  Google Scholar 

  3. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  CAS  ADS  Google Scholar 

  4. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  CAS  ADS  Google Scholar 

  5. London, F. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 141, 643–644 (1938).

    Article  CAS  ADS  Google Scholar 

  6. Sokol, P. E. in Bose–Einstein Condensation (eds Griffin, A., Snoke, D. W. & Stringari, S.) 51–85 (Cambridge, New York, (1995)).

    Book  Google Scholar 

  7. Bogoliubov, N. On the theory of superfluidity. J. Phys. USSR 11, 23–32 (1947).

    MathSciNet  Google Scholar 

  8. Campbell, C. E. in Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids (eds Wyatt, A. F. G. & Lauter, H. J.) 159 (Plenum, New York, (1991)).

    Book  Google Scholar 

  9. Griffin, A. Excitations in a Bose-Condensed Liquid (Cambridge, London, (1993)).

    Book  Google Scholar 

  10. Brown, M. & Wyatt, A. F. G. The surface boundary conditions for quantum evaporation in 4He. J. Phys.: Condens. Matter 2, 5025–5046 (1990).

    CAS  ADS  Google Scholar 

  11. Baird, M. J., Hope, F. R. & Wyatt, A. F. G. Quantised evaporation from liquid helium. Nature 304, 325–326 (1983).

    Article  CAS  ADS  Google Scholar 

  12. Hope, F. R., Baird, M. J. & Wyatt, A. F. G. Quantum evaporation from liquid 4He by rotons. Phys. Rev. Lett. 52, 1528–1531 (1984).

    Article  CAS  ADS  Google Scholar 

  13. Penrose, O. & Onsager, L. Bose Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

    Article  CAS  ADS  Google Scholar 

  14. Wyatt, A. F. G. Liquid 4He: An ordinary and exotic liquid. J. Phys.: Condens. Matter 8, 9249–9262 (1996).

    CAS  ADS  Google Scholar 

  15. Krotscheck, E. Liquid helium on a surface: ground state, excitations, condensate fraction and impurity potential. Phys. Rev. B 32, 5713–5730 (1985).

    Article  CAS  ADS  Google Scholar 

  16. Campbell, C. E. Remnants of Bose condensation and off-diagonal long range order in finite systems. J. Low Temp. Phys. 93, 907–919 (1993).

    Article  CAS  ADS  Google Scholar 

  17. Griffin, A. & Stringari, S. Surface region of superfluid helium as an inhomogeneous Bose-condensed gas. Phys. Rev. Lett. 76, 259–263 (1996).

    Article  CAS  ADS  Google Scholar 

  18. Sears, V. F., Svensson, E. C., Martel, P. & Woods, A. D. B. Neutron-scattering determination of the momentrum distribution and condensate fraction in liquid 4He. Phys. Rev. Lett. 49, 279–282 (1982).

    Article  CAS  ADS  Google Scholar 

  19. Sears, V. F. Kinetic energy and condensate fraction of superfluid 4He. Phys. Rev. B 28, 5109–5121 (1983).

    Article  CAS  ADS  Google Scholar 

  20. Ceperley, D. M. & Pollock, E. L. Path integral computation of the low-temperature properties of liquid 4He. Phys. Rev. Lett. 56, 351–354 (1986).

    Article  CAS  ADS  Google Scholar 

  21. Manousakis, E. Pandharipande, V. R. & Usmani, Q. N. Condensate fraction and momentum distribution of the ground state of liquid 4He. Phys. Rev. B 31, 7022–7028 (1985).

    Article  CAS  ADS  Google Scholar 

  22. Whitlock, P. A. & Panoff, R. M. Accurate momentum distributions from computations on 3He and 4He. Can. J. Phys. 65, 1409–1415 (1987).

    Article  CAS  ADS  Google Scholar 

  23. Tucker, M. A. H. & Wyatt, A. F. G. Phonons in liquid 4He from a heated metal film: I. The creation of high-frequency phonons. J. Phys.: Condens. Matter 6, 2813–2824 (1994).

    CAS  ADS  Google Scholar 

  24. Tucker, M. A. H. & Wyatt, A. F. G. Phonons in liquid 4He from a heated metal film: II The angular distribution. J. Phys.: Condens. Matter 6, 2825–2834 (1994).

    CAS  ADS  Google Scholar 

  25. Edwards, D. O. & Saam, W. F. The free surface of liquid helium. Prog. Low Temp. Phys. 7, 283–369 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

I thank A. Griffin for encouragement and for comments on the draft manuscript; C.Williams and J. Warren for discussions on their results for 3He and allowing me to quote them; C.Williams and M. Brown for the simulation of the peak in Fig. 1; and M. Gibbs for discussions on neutron scattering. This work was supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian F. G. Wyatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, A. Evidence for a Bose–Einstein condensate in liquid 4He from quantum evaporation. Nature 391, 56–59 (1998). https://doi.org/10.1038/34134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34134

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing