Subjects

  • An Erratum to this article was published on 19 March 1998

Abstract

The ultimate fate of the Universe, infinite expansion or a big crunch, can be determined by using the redshifts and distances of very distant supernovae to monitor changes in the expansion rate. We can now find1 large numbers of these distant supernovae, and measure their redshifts and apparent brightnesses; moreover, recent studies of nearby type Ia supernovae have shown how to determine their intrinsic luminosities2,3,4—and therefore with their apparent brightnesses obtain their distances. The >50 distant supernovae discovered so far provide a record of changes in the expansion rate over the past several billion years5,6,7. However, it is necessary to extend this expansion history still farther away (hence further back in time) in order to begin to distinguish the causes of the expansion-rate changes—such as the slowing caused by the gravitational attraction of the Universe's mass density, and the possibly counteracting effect of the cosmological constant8. Here we report the most distant spectroscopically confirmed supernova. Spectra and photometry from the largest telescopes on the ground and in space show that this ancient supernova is strikingly similar to nearby, recent type Ia supernovae. When combined with previous measurements of nearer supernovae2,5, these new measurements suggest that we may live in a low-mass-density universe.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Physics Department, Stockholm University, Box 6730, S-11385 Stockholm, Sweden

References

  1. 1

    Perlmutter, S. et al. in Thermonuclear Supernovae (eds Ruiz-Lapuente, P. et al.) 749–763 (Kluwer, Dordrecht, ( 1997)).

  2. 2

    Phillips, M. M. The absolute magnitudes of Type Ia supernovae. Astrophys. J. 413, L105–L108 (1993).

  3. 3

    Hamuy, M. et al. The absolute luminosities of the Calán/Tololo Type Ia supernovae. Astron. J. 112, 2391– 2397 (1996).

  4. 4

    Riess, A. G., Press, W. H. & Kirshner, R. P. Using Type Ia supernova light curve shapes to measure the Hubble constant. Astrophys. J. 438, L17–L20 (1995).

  5. 5

    Perlmutter, S. et al. Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at z 0.35. Astrophys. J. 483, 565–581 ( 1997).

  6. 6

    Perlmutter, S. et al. IAU Circ.No. 6621 ((1997)).

  7. 7

    Schmidt, B. et al. IAU Circ.No. 6646 ((1997)).

  8. 8

    Goobar, A. & Perlmutter, S. Feasibility of measuring the cosmological constant Λ and mass density Ω using Type Ia supernovae. Astrophys. J. 450, 14– 18 (1995).

  9. 9

    Riess, A. G. et al. Time dilation from spectral feature age measurements of Type Ia supernovae. Astron. J. 114, 722– 729 (1997).

  10. 10

    Nugent, P. et al. Evidence for a spectroscopic sequence among Type Ia supernovae. Astrophys. J. 455, L147– L150 (1993).

  11. 11

    Goldhaber, G. et al. in Thermonuclear Supernovae (eds Ruiz-Lapuente, P. et al.) 777–784 (Kluwer, Dordrecht, ( 1997)).

  12. 12

    Leibundgut, B. et al. Time dilation in the light curve of the distant Type Ia supernova SN 1995K. Astrophys. J. 466, L21– L44 (1996).

  13. 13

    Bessell, M. S. UBVRI passbands. Publ. Astron. Soc. Pacif. 102, 1181–1199 (1990).

  14. 14

    Branch, D., Nugent, P. & Fisher, A. in Thermonuclear Supernovae (eds Ruiz-Lapuente, P. et al.) 715–734 (Kluwer, Dordrecht, (1997)).

  15. 15

    Burstein, D. & Heiles, C. Reddenings derived from H I and galaxy counts—accuracy and maps. Astron. J. 87, 1165–1189 (1982).

  16. 16

    Perlmutter, S. et al. IAU Circ.No. 6540 ((1997)).

  17. 17

    Leibundgut, B. et al. Premaximum observations of the type Ia SN 1990N. Astrophys. J. 371, L23–L26 (1991).

  18. 18

    Wells, L. A. et al. The type Ia supernova 1989B in NGC 3627 (M66). Astron. J. 108, 2233–2250 (1994).

  19. 19

    Branch, D. et al. The type I supernova 1981b in NGC 4536: the first 100 days. Astrophys. J. 270, 123– 139 (1983).

  20. 20

    Patat, F. et al. The Type Ia supernova 1994D in NGC 4526: the early phases. Mon. Not. R. Astron. Soc. 278, 111– 124 (1996).

  21. 21

    Cappellaro, E., Turatto, M. & Fernley, J. in IUE—ULDA Access Guide No. 6: Supernovae (eds Cappellaro, E., Turatto, M. & Fernley, J.) 1– 180 (ESA, Noordwijk, (1995)).

  22. 22

    Leibundgut, B., Tammann, G., Cadonau, R. & Cerrito, D. Supernova studies. VII. An atlas of light curves of supernovae type I. Astron. Astrophys. Suppl. Ser. 89, 537– 579 (1991).

  23. 23

    Holtzman, J. et al. The photometric performance and calibration of WFPC2. Publ. Astron. Soc. Pacif. 107, 1065– 1093 (1995).

  24. 24

    Whitmore, B. & Heyer, I. New Results on Charge Transfer Efficiency and Constraints on Flat-Field Accuracy (Instrument Sci. Rep. WFPC2 97-08, Space Telescope Science Institute, Baltimore, (1997)).

  25. 25

    Kim, A., Goobar, A. & Perlmutter, S. Ageneralized K-corrections for Type Ia supernovae: comparing R-band photometry beyond z = 0.2 with B, V, and R-band nearby photometry. Publ. Astron. Soc. Pacif. 108, 190– 201 (1996).

  26. 26

    Stiavelli, M. & Mutchler, M. WFPC2 Electronics Verification (Instrument Sci. Rep. WFPC2 97-07, Space Telescope Science Institute, Baltimore, (1997)).

  27. 27

    Carrol, S., Press, W. & Turner, E. The cosmological constant. Annu. Rev. Astron. Astrophys. 30, 499–542 ( 1992).

  28. 28

    Schramm, D. in Astrophysical Ages and Dating Methods (eds Vangioni-Flam, E. et al.) 365–384 (Editions Frontières, Gif sur Yvette, (1990)).

Download references

Acknowledgements

The authors are members of the Supernova Cosmology Project. We thank CTIO, Keck, HST, WIYN, ESO and the ORM–La Palma observatories for a generous allocation of time, and the support of dedicated staff in pursuit of this project; D. Harmer, P. Smith and D. Willmarth for their help as WIYN queue observers; and G. Bernstein and A. Tyson for developing and supporting the Big Throughput Camera which was instrumental in the discovery of this supernova.

Author information

Affiliations

  1. E. O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50-232, Berkeley, 94720, California , USA

    • S. Perlmutter
    • , G. Aldering
    • , S. Deustua
    • , S. Fabbro
    • , G. Goldhaber
    • , D. E. Groom
    • , I. M. Hook
    • , A. G. Kim
    • , M. Y. Kim
    • , R. A. Knop
    • , P. Nugent
    • , R. Pain
    •  & C. R. Pennypacker
  2. Center for Particle Astrophysics, University of California , Berkeley, 94720, California, USA

    • S. Perlmutter
    •  & G. Goldhaber
  3. Dipartimento di Astronomia, Universita’ di Padova, Vicolo Osservatorio 5, 35122, Padova , Italy

    • M. Della Valle
  4. Space Sciences Laboratory, University of California , Berkeley, 94720, California, USA

    • S. Deustua
    •  & C. R. Pennypacker
  5. Institute of Astronomy, Madingley Road , CB3 0HA, Cambridge, UK

    • R. S. Ellis
    •  & R. G. McMahon
  6. LPNHE, Universites Paris VI & VII, T33 Rdc, 4, Place Jussieu, 75252 Cedex 05, Paris, France

    • S. Fabbro
    •  & R. Pain
  7. Observatoire de Strasbourg, 11, Rue de l'Universite , 67000, Strasbourg, France

    • S. Fabbro
  8. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, 21218 , Maryland, USA

    • A. Fruchter
  9. European Souther Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching bei Munchen, Germany

    • I. M. Hook
  10. Physique Corpusculaire et Cosmologie, Collège de France, 11, Place Marcelin-Berthelot, 75231 , Paris, France

    • A. G. Kim
  11. European Southern Observatory, Alonso de Cordova, 3107, Vitacura, Casilla, 19001, 19, Santiago , Chile

    • C. Lidman
  12. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, 21218, Maryland, USA

    • N. Panagia
  13. Astrophysics Division Space Science Department of ESA

    • N. Panagia
  14. Department of Astronomy, Faculty of Physics, University of Barcelona, Diagonal 647, E-08028, Barcelona, Spain

    • P. Ruiz-Lapuente
  15. Department of Physics, Yale University, 260 Whitney Avenue, New Haven, JWG 463, 06520, Connecticut, USA

    • B. Schaefer
  16. Isaac Newton Group, Apartado 321, Santa Cruz de La Palma, 38780 , The Canary Islands, Spain

    • N. Walton

Authors

  1. Search for S. Perlmutter in:

  2. Search for G. Aldering in:

  3. Search for M. Della Valle in:

  4. Search for S. Deustua in:

  5. Search for R. S. Ellis in:

  6. Search for S. Fabbro in:

  7. Search for A. Fruchter in:

  8. Search for G. Goldhaber in:

  9. Search for D. E. Groom in:

  10. Search for I. M. Hook in:

  11. Search for A. G. Kim in:

  12. Search for M. Y. Kim in:

  13. Search for R. A. Knop in:

  14. Search for C. Lidman in:

  15. Search for R. G. McMahon in:

  16. Search for P. Nugent in:

  17. Search for R. Pain in:

  18. Search for N. Panagia in:

  19. Search for C. R. Pennypacker in:

  20. Search for P. Ruiz-Lapuente in:

  21. Search for B. Schaefer in:

  22. Search for N. Walton in:

Corresponding author

Correspondence to S. Perlmutter.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/34124

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.