Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels


THE mechanisms that underlie synaptic plasticity have been largely inferred from electrophysiological studies performed at sites remote from synaptic terminals. Thus the mechanisms involved in plasticity at the secretory sites have remained ill-defined. We have now used somatic synapses of cultured Helisoma neurones1–3 to directly assess presynaptic ion conductances and study the secre-tory apparatus. At these synapses we determined the actions of a modulatory neuropeptide, Phe-Met-Arg-Phe-NH2 (FMRFa), on the release of the neurotransmitter acetylcholine (ACh). Using voltage- and calcium-clamp techniques, we have demonstrated that FMRFa causes a presynaptic inhibition of ACh release by (1) reducing the magnitude of the voltage-dependent calcium current, and (2) regulating the secretory apparatus. The photolabile calcium cage, nitr-5 (refs 3–8), was dialysed into the presynaptic cell. In response to ultraviolet light, calcium was released from nitr-5 and ACh secretion was stimulated. Under conditions of constant inter-nal calcium, FMRFa reduced the rate of ACh release. Thus we conclude that FMRFa reduces the influx of calcium during the action potential and decreases the sensitivity of the secretory apparatus to elevated internal calcium, thereby contributing to a presynaptic inhibition of transmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Haydon, P. G. J. Neurosci. 8, 1032–1038 (1988).

    Article  CAS  Google Scholar 

  2. Haydon, P. G. & Man-Son-Hing, H. J. Neuron 1, 919–927 (1988).

    Article  CAS  Google Scholar 

  3. Zucker, R. S. & Haydon, P. G. Nature 335, 360–362 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Tsien, R. Y. & Zucker, R. S. Biophys. J. 50, 843–853 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Gurney, A. M., Tsien, R. Y. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 84, 3496–3500 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A. & Tsien, R. Y. Am. chem. Soc. 110, 3212–3220 (1988).

    Article  CAS  Google Scholar 

  7. Tsien, R. Y. Trends Neurosci. 11, 419–424 (1988).

    Article  CAS  Google Scholar 

  8. Kaplan, J. H. & Somolyo, A. P. Trends Neurosci. 12, 54–59 (1989).

    Article  CAS  Google Scholar 

  9. Kandel, E. R. & Schwartz, J. H. Science 218, 433–443 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Klein, M., Camardo, J. S. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 79, 5713–5717 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 413–417 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  Google Scholar 

  13. Ewald, D. A., Pang, I.-H., Sternweis, P. C. & Miller, R. J. Neuron 2, 1185–1193 (1989).

    Article  CAS  Google Scholar 

  14. Harris-Warrick, R. M. et al. Neuron 1, 27–32 (1988).

    Article  CAS  Google Scholar 

  15. Holz, G. G., Rane, S. G. & Dunlap, K. Nature 319, 670–672 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Colombaioni, L., Paupardin-Trisch, D., Vidal, P. P. & Gerschenfeld, H. M. J. Neurosci. 5, 2533–2538 (1985).

    Article  CAS  Google Scholar 

  17. Brezina, V., Eckert, R. & Erxleben, C. J. Physiol., Lond. 388, 565–595 (1987).

    Article  CAS  Google Scholar 

  18. Kramer, R. H., Levitan, E. S., Carrow, G. M. & Levitan, I. B. J. Neurophysiol. 60, 1728–1737 (1988).

    Article  CAS  Google Scholar 

  19. Baker, P. Prog. Zool. 33, 265–274 (1986).

    CAS  Google Scholar 

  20. Knight, D. E. & Scrutton, M. C. Nature 309, 66–68 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Lohse, M. J., Klotz, K.-N., Salzer, M. J. & Schwabe, U. Proc. natn. Acad. Sci. U.S.A. 85, 8875–8879 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Knight, D. E. & Baker, P. F. Membr. Biol. 68, 107–140 (1982).

    Article  CAS  Google Scholar 

  23. Rahamimoff, R. & Yaari, Y. J. Physiol., Lond. 228, 241–257 (1973).

    Article  CAS  Google Scholar 

  24. Grynkiewicz, G., Pionie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  25. Nestler, E. J. & Greengard, P. Protein Phosphorylation in the Nervous System (Wiley, New York, 1984).

    Google Scholar 

  26. Llinas, R. et al. Proc. natn. Acad. Sci. U.S.A. 82, 3035–3039 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Man-Son-Hing, H., Zoran, M., Lukowiak, K. et al. A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels. Nature 341, 237–239 (1989).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing