Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases

Abstract

ALPHA atrial natriuretic peptide (α-ANP) and brain natriuretic peptide are homologous polypeptide hormones involved in the regulation of fluid and electrolyte homeostasis1,2. These two natriuretic peptides apparently share common receptors and stimulate the intracellular production of cyclic GMP as a second messenger1. Molecular cloning has defined two types of natriuretic peptide receptors: the ANP-C receptor of relative molecular mass (Mr) 60–70,000 (60–70 K), which is not coupled to cGMP production and may function in the clearance of ANP (refs 3,4) and the ANP-A receptor of Mr 120–140 K, which is a membrane form of guanylate cyclase in which ligand binding to the extracellular domain activates the cytoplasmic domain of the enzyme5,6. Here we report the cloning and expression of a second human natriuretic peptide-receptor guanylate cyclase, the ANP-B receptor. The ANP-B receptor is preferentially activated by porcine brain natriuretic peptide rather than human α-ANP, whereas the ANP-A receptor responds similarly to both natriuretic peptides. These observations may have important implications for our understanding of the central and peripheral control of cardiovascular homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Inagami, T. J. biol. Chem. 264, 3043–3046 (1989).

    CAS  PubMed  Google Scholar 

  2. Baxter, J. D., Lewicki, J. A. & Gardner, D. G. Biol Technology 6, 529–546 (1988).

    CAS  Google Scholar 

  3. Fuller, F. et al. J. biol. Chem. 263, 9395–9401 (1988).

    CAS  PubMed  Google Scholar 

  4. Maack, T. et al. Science 238, 675–678 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lowe, D. G. et al. EMBO J. 8, 1377–1384 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chinkers, M. et al. Nature 338, 78–83 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Von Heijne, G. Eur. J. Biochem. 133, 17–21 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Sabatini, D. D., Kreibich, G., Morimoto, T. & Adesnik, M. J. Cell Biol. 92, 1–22 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Singh, S. et al. Nature 334, 708–712 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Meloche, S., Ong, H. & DeLean, A. J. biol. Chem. 262, 10252–10258 (1987).

    CAS  PubMed  Google Scholar 

  11. Meloche, S., McNicholl, N., Liu, B., Ong, H. & DeLean, A. Biochemistry 27, 8151–8158 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Holland, R., Woodgett, J. R. & Hardie, D. G. FEBS Lett. 154, 269–273 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, R. J. & Czech, M. P. J. biol. Chem. 260, 2543–2551 (1985).

    CAS  PubMed  Google Scholar 

  14. Kurose, H., Inagami, T. & Oi, M. FEBS Lett. 219, 375–379 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Song, D.-L., Kohse, K. P. & Murad, F. FEBS Lett. 232, 125–129 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Koesling, D. et al. FEBS Lett. 239, 29–34 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Krupinski, J. et al. Science 244, 1558–1564 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kojima, M., Minamino, N., Kangawa, K. & Matsuo, H. Biochem. biophys. Res. Commun. 159, 1420–1426 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Pennica, D. et al. Science 236, 83–88 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chen, E. Y. et al. Genomics 4, 479–497 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Ullrich, A. et al. Nature 313, 750–761 (1985).

    Article  ADS  Google Scholar 

  22. Coussens, L. et al. Science 233, 859–866 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Peralta, E. et al. Science 236, 600–605 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Garbers, D. L. J. biol. Chem. 264, 9103–9106 (1989).

    CAS  PubMed  Google Scholar 

  25. Saper, C. B. et al. Neurosci. Lett. 96, 29–34 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Light, D. B., Schweibert, E. M., Karlson, K. H. & Stanton, B. A. Science 243, 383–385 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Francis, S. H., Lincoln, T. M. & Corbin, J. D. J. biol. Chem. 255, 620–626 (1980).

    CAS  PubMed  Google Scholar 

  28. Goldberg, N. D. & Haddox, M. K. A. Rev. Biochem. 46, 823–896 (1977).

    Article  CAS  Google Scholar 

  29. Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, G. & Maniatis, T. Cell 15, 1157–1174 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Mullis, K. B. & Faloona, F. A. Meth. Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Ms., Lowe, D., Lewis, M. et al. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341, 68–72 (1989). https://doi.org/10.1038/341068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing