Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules

Abstract

THE entry of calcium ions into cells through voltage-activated Ca2+ channels in the plasma membrane triggers many important cellular processes. The activity of these channels is regulated by several hormones and neuretransmitters, as well as intracellular messengers such as Ca2+ itself (for examples, see refs 1–9). In cardiac muscle, myoplasmic Ca2+ has been proposed to potentiate Ca2+ influx1,7–9, although a direct effect of Ca2+ on these channels has not yet been demonstrated. Photosensitive 'caged-Ca2+ molecules such as nitr-5, however, provide powerful tools for investigating possible regulatory roles of Ca2+ on the functioning of Ca2+ channels10,11. Because its affinity for Ca2+ is reduced by irradiation, nitr-5 can be loaded into cells and induced to release Ca2+ with a flash of light10. By using this technique we found that the elevation of intracellular Ca2+ concentration directly augmented Ca2+-channel currents in isolated cardiac muscle cells from both frog and guinea pig. The time course of the current potentiation was similar to that seen with β-adrenergic stimulation. Thus Ca2+ may work through a similar pathway, involving phosphorylation of a regulatory Ca2+-channel protein. This mechanism is probably important for the accumulation of Ca2+ and the amplification of the contractile response in cardiac muscle, and may have a role in other excitable cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marban, E. & Tsien, R. W. J. Physiol., Lond. 329, 589–614 (1982).

    Article  CAS  Google Scholar 

  2. Mentrard, D., Vassort, G. & Fischmeister, R. J. gen. Physiol. 83, 105–131 (1984).

    Article  CAS  Google Scholar 

  3. Campbell, D. L., Giles, W. R., Hume, J. R. & Shibata, E. F. J. Physiol., Lond. 403, 287–315 (1988).

    Article  CAS  Google Scholar 

  4. Kass, R. S. & Sanguinetti, M. C. J. gen. Physiol. 84, 705–726 (1984).

    Article  CAS  Google Scholar 

  5. Lee, K. S., Marban, E. & Tsien, R. W. J. Physiol., Lond. 364, 395–411 (1985).

    Article  CAS  Google Scholar 

  6. Bechem, M. & Pott, L. Pflügers Arch. ges Physiol. 404, 10–20 (1985).

    Article  CAS  Google Scholar 

  7. Fedida, D., Noble, D. & Spindler, A. J. J. Physiol., Lond. 405, 461–475 (1988).

    Article  CAS  Google Scholar 

  8. Noble, S. & Shimoni, Y. J. Physiol., Lond. 310, 57–75 (1981).

    Article  CAS  Google Scholar 

  9. Tseng, G-N. Circulation Res. 63, 468–482, (1988).

    Article  CAS  Google Scholar 

  10. Gurney, A. M., Tsien, R. Y. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 84, 3496–3500 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A. & Tsien, R. Y. J. Am. chem. Soc. 110, 3212–3220 (1988).

    Article  CAS  Google Scholar 

  12. Page, S. & Niedergerke, R. J. cell. Sci. 11, 199–203 (1972).

    Google Scholar 

  13. Tsien, R. Y. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  Google Scholar 

  14. Vaughan-Jones, R. D., Lederer, W. J. & Eisner, D. A. Nature 301, 522–524 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Kaibara, M. & Kameyama, M. J. Physiol., Lond. 403, 621–640 (1988).

    Article  CAS  Google Scholar 

  16. Richard, S., Nerbonne, J. M., Nargeot, J., Lester, H. A. & Garnier, D. Pflügers Arch. ges. Physiol. 403, 312–317 (1985).

    Article  CAS  Google Scholar 

  17. Bonvallet, R. Pflügers Arch. ges. Physiol. 408, 540–542 (1987).

    Article  CAS  Google Scholar 

  18. Mitra, R. & Morad, M. Proc. natn. Acad. Sci. U.S.A. 83, 5340–5344 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Reuter, H. Nature 301, 569–574 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Lamers, J. M. J. Gen. Physiol. Biophys. 4, 143–154 (1985).

    CAS  PubMed  Google Scholar 

  21. Charnet, P. thesis, Univ. Tours (1988).

  22. Kameyama, M., Hofmann, F. & Trautwein, W. Pflügers Arch. ges. Physiol. 405, 285–293 (1985).

    Article  CAS  Google Scholar 

  23. Lee, K. S. Proc. natn. Acad. Sci. U.S.A. 84, 3941–3945 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Fedida, D., Noble, D. & Spindler, A. J. J. Physiol. Lond. 405, 439–460 (1988).

    Article  CAS  Google Scholar 

  25. Niedergerke, R. J. Physiol., Lond 134, 569–583 (1956).

    Article  CAS  Google Scholar 

  26. Fabiato, A. Am. J. Physiol. 245, C1–C14 (1983).

    Article  CAS  Google Scholar 

  27. Armstrong, D. et al. J. gen. Physiol. 92, 10a (1988).

    Google Scholar 

  28. Hume, J. R. & Giles, W. J. gen. Physiol. 78, 18–43 (1981).

    Article  Google Scholar 

  29. Lee, K. S. & Tsien, R. W. J. Physiol., Lond. 354, 253–272 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurney, A., Charnet, P., Pye, J. et al. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 341, 65–68 (1989). https://doi.org/10.1038/341065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341065a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing