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NEWS AND VIEWS 

Is chaos becoming conversational? 
Most accounts of chaotic dynamical systems are based on numerical computations of some kind. But now there is a 
welcome sign that verbal arguments may make these studies more accessible. 

TIIERE is something waywardly biblical 
ahout the amhition to make order out of 
chaos. but there is nothing wrong with 
wishing to engage in conversation about 
the concept of chaos in dynamics even if 
one happens to be so disadvantaged as not 
recently to have had access to a Cray II. 
That thought will be provoked in the 
minds of many who stumble on a fascinat
ing paper called "Routes to chaotic scat
tering" in the issue of Physical Review 
Letters for 28 August (63, 919; 1989). 

Chaos in dynamics is a simple concept 
now much popularized, often for the 
wrong reasons: there are circumstances in 
which the solution of the equations 
describing real problems in dynamics 
depend sensitively, sometimes exquisitely 
so. on the initial conditions. The result is 
that identical particles starting from 
virtually indistinguishable places in phase 
space (the join of position and velocity) 
will rapidly drift apart from each other. 
Those who work in the field and the Cray 
II seem to have been made for each other , 
for most of what is known about chaos is 
numerical. 

What S. Bleher, E . Ott and C. Grebogi 
from the University of Maryland have 
done in their article will encourage those 
with different inclinations. Their argu
ments are in the main verbal, and almost 
analytical. 

Their problem, which evidently should 
have been taken up much earlier, is simply 
that of the scattering of classical particles 
(otherwise 'billiard balls') by a potential 
surface, a region of space in which a particle 
has extra potential energy and from which 
it is therefore repelled. That such a system 
should be capable of chaotic behaviour is 
easily appreciated: even in the over
simple representation of a scattering 
centre by a billiard ball, the outcome of a 
scattering event is too often an incon
veniently sensitive function of the impact 
parameter (the offset of the direction of 
travel of the particle and the parallel line 
through the centre of the target) , as 
billiards players know all too well. 

For kinds of scattering centres other 
than rigid hard spheres, the behaviour of 
impinging particles can be more compli
cated. For example, in nuclear scattering 
(still classical), there is supposed to be a 
region of space in which the potential 
energy is spherically symmetrical about 
some point (the nucleus). The potential 
increases steadily as the scattering centre 
is approached and will then be a maxi-
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mum , say Em' Rutherford was the first to 
calculate the scattering angle as a function 
of the impact parameter. 

In this simple case , chaos does not arise. 
Indeed, if the energy, E, of the impinging 
particles is greater than Em' it is easy 
enough to guess what the graph of the 
scattering angle against the impact para
meter will be. When the impact parameter 
is very large and, alternatively, zero, the 
scattering angle will be zero: particles 
whose paths are a long way from the 
scattering centre will not be deflected , 
whereas those aimed directly at the centre 
will also go straight through , but there will 
be some intermediate impact parameter 
for which the scattering is a maximum, but 
the maximum angle must be less than n12. 
The case when E is less than Em is more 
complicated, for particles aimed directly 
at the scattering centre bounce right back, 
but chaos does not arise. 

But what if the scattering centre is not a 
simple potential-energy peak, but a group 
of several of them? This is the problem 
that Bleher and his colleagues tackle, for 
simplicity in two dimensions. As a 
numerical example, they describe what 
happens when the potential energy is a 
simple function of the coordinates of the 
form x'y'exp[ - (x' + y') 1, which is really a 
system of four equal peaks in the potential
energy surface. When E is greater than 
Em' again there is no difficulty; the scatter
ing angle is a more complicated function 
of the impact parameter , but still smooth. 
But if the energy is less than the maxi
mum, the system lapses into chaos. What 
happens is that particles are trapped 
within the system, bouncing repeatedly 
between the energy maxima before 
eventually escaping in a direction that is 
exquisitely sensitive to the manner in 
which they were originally captured. 

What can be said in words about such a 
complicated problem? A great deal, it 
seems. The authors take the general case 
of an array of three scattering centres 
whose energy maxima are Em" Em2 and 
Em)' arranged in order of increasing size. 
Two cases arise, the authors say, depen
ding on the geometrical relationship of the 
scattering centres . Either the weakest of 
the three lies outside the circle whose 
diameter is the line joining the other two, 
or it lies inside that circle. The essence of 
the distinction is that, in the first case, the 
angle at the apex of the triangle joining the 
three scattering centres must be less than 
n12 , but otherwise is greater than that. 

The problem is to predict when and how 
particles impinging on this system will 
behave chaotically. 

Chaos plainly cannot arise unless E is 
less than Em2 , for then there is no way in 
which the particles can be trapped into 
orbits bouncing between a pair of scatter
ing centres. And, in this case, because the 
maximum scattering angle at the lowest 
peak must be less than n/2, a particle 
scattered from say Em' towards Em' cannot 
be scattered back towards Em)' But once 
the energy of the incident particles falls 
below Em" an infinite number of trapped 
orbits is accessible , simply because larger 
angles of deflection are immediately 
possible . There is an abrupt transition 
from order to chaos. 

The second case, where the scattering 
centre with the smallest energy lies within 
the circle , is more complicated. If E is 
greater than Em' but less than Em" every
thing hangs on whether Em' is large enough 
to deflect a particle arriving from one of 
the other scattering centres towards the 
third . If so , there will again be an immedi
ate transition to chaos , for an infinite 
number of nearly periodic bouncing 
orbits will be accessible to particles. If, on 
the other hand, Em' is insufficiently 
large for that, there will still be trajec
tories in which a particle first scattered by 
Em' will be trapped for less or more time 
between the other two centres. The num
ber of these orbits will multiply rapidly as 
E is reduced below Em" but in a manner 
exactly like the appearance of chaos in 
more familiar chaotic systems, by the 
process called bifurcation (equivalently, 
'period-doubling') in which extra allow
able orbits make their appearance as some 
parameter is varied. 

The result is simple enough, but plainly 
applicable to much more complicated 
arrays of scatterers. To those working in 
the field of chaos, much ofthe interest will 
lie in the authors' demonstration that 
chaos can arise in the same dynamical 
system in two distinct ways - either 
abruptly , or by the more familiar bifurca
tion route . For what it is worth , their 
calculation is that the fractal dimension of 
the number of chaotic orbits varies as they 
expect with the difference between E and 
the energy of the scattering peak. But, to 
others, it will be enlivening that the 
authors have been able to make their 
intricate argument almost verbal. Those 
without an allocation of time on a Cray II 
will be pleased. John Maddox 
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