Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Earthquakes and friction laws

Abstract

Earthquakes have long been recognized as resulting from a stick–slip frictional instability. The development of a full constitutive law for rock friction now shows that the gamut of earthquake phenomena—seismogenesis and seismic coupling, pre- and post-seismic phenomena, and the insensitivity of earthquakes to stress transients—all appear as manifestations of the richness of this friction law.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systematics of the friction parameter (ab).
Figure 2: A synoptic model for stability as a function of depth for crustal faults and subduction zones.
Figure 3: Oscillatory motion (creep episodes) of the creeping section of the San Andreas fault in central California (from ref. 10).
Figure 4: The observed seismic coupling coefficient χ versus the calculated reduction in normal force from a standard state for most of.
Figure 5: Slip as a function of depth over the seismic cycle of a strike–slip fault, using a frictional model containing a transition.
Figure 6

Similar content being viewed by others

References

  1. Cowie, P. A. & Scholz, C. H. Growth of faults by the accumulation of seismic slip. J. Geophys. Res. 97, 11085–11095 (1992).

    ADS  Google Scholar 

  2. Scholz, C. H. Wear and gouge formation in brittle faulting. Geology 15, 493–495 (1987).

    ADS  Google Scholar 

  3. Gilbert, G. K. Atheory of the earthquakes of the Great Basin, with a practical application. Am. J. Sci. XXVII, 49–54 (1884).

    ADS  Google Scholar 

  4. Brace, W. F. & Byerlee, J. D. Stick slip as a mechanism for earthquakes. Science 153, 990–992 (1966).

    ADS  CAS  PubMed  Google Scholar 

  5. Dieterich, J. Time-dependence of rock friction. J. Geophys. Res. 77, 3690–3697 (1972).

    ADS  Google Scholar 

  6. Scholz, C., Molnar, P. & Johnson, T. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism. J. Geophys. Res. 77, 6392–6406 (1972).

    ADS  Google Scholar 

  7. Stesky, R. et al. Friction in faulted rock at high temperature and pressure. Tectonophysics 23, 177–203 (1974).

    ADS  Google Scholar 

  8. Rabinowicz, E. The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. (London) 71, 668–675 (1958).

    ADS  Google Scholar 

  9. Dieterich, J. Time dependent friction and the mechanics of stick slip. Pure Appl. Geophys. 116, 790–806 (1978).

    ADS  Google Scholar 

  10. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, (1990)).

    Google Scholar 

  11. Scholz, C. H. & Engelder, T. Role of asperity indentation and ploughing in rock friction. Int. J. Rock Mech. Min. Sci. 13, 149–154 (1976).

    Google Scholar 

  12. Wang, W. & Scholz, C. H. Micromechanics of the velocity and normal stress dependence of rock friction. Pure Appl. Geophys. 143, 303–316 (1994).

    ADS  Google Scholar 

  13. Dieterich, J. Modelling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979).

    ADS  Google Scholar 

  14. Ruina, A. L. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    ADS  Google Scholar 

  15. Heslot, F., Baumberger, T., Perrin, B., Caroli, B. & Caroli, C. Creep, stick-slip, and dry friction dynamics: experiments and heuristic model. Phys. Rev. E 49, 4973–4988 (1994).

    ADS  CAS  Google Scholar 

  16. Dieterich, J. H. & Kilgore, B. Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994).

    ADS  Google Scholar 

  17. Byerlee, J. D. Friction of rock. Pure Appl. Geophys. 116, 615–626 (1978).

    ADS  Google Scholar 

  18. Segall, P. & Rice, J. R. Dilatancy, compaction, and slip instability of a fluid infiltrated fault. J. Geophys. Res. 100, 22155–22171 (1995).

    ADS  Google Scholar 

  19. Gu, J. C., Rice, J. R., Ruina, A. L. & Tse, S. T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167–196 (1984).

    ADS  MATH  Google Scholar 

  20. Beeler, N. M., Tullis, T. E. & Weeks, J. D. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett. 21, 1987–1990 (1994).

    ADS  Google Scholar 

  21. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett. 18, 609–612 (1991).

    ADS  Google Scholar 

  22. Scholz, C. H. The brittle-plastic transition and the depth of seismic faulting. Geol. Rundsch. 77, 319–328 (1988).

    ADS  Google Scholar 

  23. Shimamoto, T. Atransition between frictional slip and ductile flow undergoing large shearing deformation at room temperature. Science 231, 711–714 (1986).

    ADS  CAS  PubMed  Google Scholar 

  24. Marone, C., Raleigh, C. B. & Scholz, C. Frictional behavior and constitutive modelling of simulated fault gouge. J. Geophys. Res. 95, 7007–7025 (1990).

    ADS  Google Scholar 

  25. Marone, C. & Scholz, C. The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophys. Res. Lett. 15, 621–624 (1988).

    ADS  Google Scholar 

  26. Sibson, R. H. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull. Seismol. Soc. Am. 72, 151–163 (1982).

    Google Scholar 

  27. Byrne, D. E., Davis, D. M. & Sykes, L. R. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7, 833–857 (1988).

    ADS  Google Scholar 

  28. Hyndman, R. D. & Wang, K. Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J. Geophys. Res. 98, 2039–2060 (1993).

    ADS  Google Scholar 

  29. Sibson, R. H. Transient discontinuities in ductile shear zones. J. Struct. Geol. 2, 165–171 (1980).

    ADS  Google Scholar 

  30. Stel, H. The effect of cyclic operation of brittle and ductile deformation on the metamorphic assemblage in cataclasites and mylonites. Pure Appl. Geophys. 124, 289–307 (1986).

    ADS  CAS  Google Scholar 

  31. Kanamori, H. & Kikuchi, M. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361, 714–716 (1993).

    ADS  Google Scholar 

  32. Irwin, W. P. & Barnes, I. Effects of geological structure and metamorphic fluids on seismic behavior of the San Andreas fault system in central and northern California. Geology 3, 713–716 (1975).

    ADS  Google Scholar 

  33. Ruff, L. & Kanamori, H. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23, 240–252 (1980).

    ADS  Google Scholar 

  34. Zoback, M. L. & Zoback, M. D. Crustal stress and intraplate deformation. Geowissenshaften 15, 116–112 (1997).

    Google Scholar 

  35. Zoback, M. D. et al. New evidence on the state of stress of the San Andreas fault system. Science 238, 1105–1111 (1987).

    ADS  CAS  PubMed  Google Scholar 

  36. Scholz, C. H. Faults without friction? Nature 381, 556–557 (1996).

    ADS  CAS  Google Scholar 

  37. Scholz, C. H. & Campos, J. On the mechanism of seismic decoupling and back-arc spreading in subduciton zones. J. Geophys. Res. 100, 22103–2212 (1995).

    ADS  Google Scholar 

  38. McCaffrey, R. Statistical significance of the seismic coupling coefficient. Bull. Seismol. Soc. Am. 87, 1069–1073 (1997).

    Google Scholar 

  39. Scholz, C. H. & Small, C. The effect of seamount subduction on seismic coupling. Geology 25, 487–490 (1997).

    ADS  Google Scholar 

  40. Seeber, L., Armbruster, J. G. & Quittmeyer, R. C. Seismicity and continental subduction in the Himalayan arc in Geodynamics Series, V (eds Gupta & Delany) 215–242 (Am. Geophys. Un., Washington DC, (1981)).

    Google Scholar 

  41. Amelung, F. & King, G. C. P. Earthquake scaling laws for creeping and non-creeping faults. Geophys. Res. Lett. 24, 507–510 (1997).

    ADS  Google Scholar 

  42. Nadeau, R., Foxall, W. & McEvilly, T. Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science 267, 503–507 (1995).

    ADS  CAS  PubMed  Google Scholar 

  43. Bakun, W. H., Stewart, R. M., Bufe, C. G. & Marks, S. M. Implication of seismicity for failure of a section of the San Andreas fault. Bull. Seismol. Soc. Am. 70, 185–201 (1980).

    Google Scholar 

  44. Tse, S. & Rice, J. Crustal earthquake instability in relation to the depth variation of friction slip properties. J. Geophys. Res. 91, 9452–9472 (1986).

    ADS  Google Scholar 

  45. Rice, J. R. Spacio-temporal complexity of slip on a fault. J. Geophys. Res. 98, 9885–9907 (1993).

    ADS  Google Scholar 

  46. Thatcher, W. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J. Geophys. Res. 88, 5893–58902 (1978).

    ADS  Google Scholar 

  47. Savage, J. C. & Prescott, W. H. Asthenospheric readjustment and the earthquake cycle. J. Geophys. Res. 83, 3369–3376 (1978).

    ADS  Google Scholar 

  48. Gilbert, L. E., Scholz, C. H. & Beavan, J. Strain localization along the San Andreas fault: consequences for loading mechanisms. J. Geophys. Res. 99, 23975–23984 (1994).

    ADS  Google Scholar 

  49. Savage, J. C. & Svarc, J. L. Postseismic deformation associated with the 1992 MW = 7.3 Landers earquake, southern California. J. Geophys. Res. 102, 7565–7577 (1997).

    ADS  Google Scholar 

  50. Das, S. & Scholz, C. Theory of time-dependent rupture in the earth. J. Geophys. Res. 86, 6039–6051 (1981).

    ADS  Google Scholar 

  51. Marone, C. J., Scholz, C. H. & Bilham, R. On the mechanics of earthquake afterslip. J. Geophys. Res. 96, 8441–8452 (1991).

    ADS  Google Scholar 

  52. Heki, K., Miyazaki, S. & Tsuji, H. Silent fault slip following an interplate thrust earthquake at the Japan trench. Nature 386, 595–598 (1997).

    ADS  CAS  Google Scholar 

  53. Dieterich, J. H. Aconstitutive law for rate of earthquake production and its application ot earthquake clustering. J. Geophys. Res. 99, 2601–2618 (1994).

    ADS  Google Scholar 

  54. Gross, S. & Kisslinger, C. Estimating tectonic stress rate and state with Landers aftershocks. J. Geophys. Res. 102, 7603–7612 (1997).

    ADS  Google Scholar 

  55. Dieterich, J. H. Nucleation on faults with rate and state-dependent strength. Tectonophysics 211, 115–134 (1992).

    ADS  Google Scholar 

  56. Ohnaka, M., Kuwahana, Y., Yamamoto, K. & Hirasawa, T. in Earthquakes Source Mechanics (eds Das, S., Boatwright, J. & Scholz, C.) 13–24 (AGU Monogr. 37, Am. Geophys. Un., Washington DC, (1986)).

    Google Scholar 

  57. Scholz, C. H. The critical slip distance for seismic faulting. Nature 336, 761–763 (1988).

    ADS  Google Scholar 

  58. Marone, C. & Kilgore, B. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362, 618–622 (1993).

    ADS  Google Scholar 

  59. Abercrombie, R. & Leary, P. Source parameters of small earthquakes recorded ant 2.5 km depth, Cajon Pass, southern California: Implications for earthquake scaling. Geophys. Res. Lett. 20, 1511–1514 (1993).

    ADS  Google Scholar 

  60. Dodge, D. A., Beroza, G. C. & Ellsworth, W. L. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J. Geophys. Res. 101, 22371–22392 (1996).

    ADS  Google Scholar 

  61. Ellsworth, W. L. & Beroza, G. C. Seismic evidence for a seismic nucleation phase. Science 268, 851–855 (1995).

    ADS  CAS  PubMed  Google Scholar 

  62. Dieterich, J. H. Nucleation and triggering of earthquake slip: effect of periodic stresses. Tectonophysics 144, 127–139 (1987).

    ADS  Google Scholar 

  63. Heaton, T. H. Tidal triggering of earthquakes. Bull. Seismol. Soc. Am. 72, 2181–2200 (1982).

    Google Scholar 

  64. Hill, D. P. et al. Seismicity in the western United States triggered by the M 7.4 Landers, California, earthquake of June 28, 1992. Science 260, 1617–1623 (1993).

    ADS  CAS  PubMed  Google Scholar 

  65. Cotton, F. & Coutant, O. Dynamic stress variations due to shear faults in a plane layered medium. Geophys. J. Int. 128, 676–688 (1997).

    ADS  Google Scholar 

  66. King, G. C. P., Stein, R. S. & Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84, 935–953 (1994).

    Google Scholar 

  67. Power, W. L., Tullis, T. E., Brown, S., Boitnott, G. & Scholz, C. H. Roughness of natural fault surfaces. Geophys. Res. Lett. 14, 29–32 (1987).

    ADS  Google Scholar 

  68. Carlson, J. M. & Langer, J. S. Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470–6484 (1989).

    ADS  MathSciNet  CAS  Google Scholar 

  69. Myers, C., Shaw, B. & Langer, J. Slip complexity in a crustal plane model of an earthquake fault. Phys. Rev. Lett. 77, 972–975 (1996).

    ADS  CAS  PubMed  Google Scholar 

  70. Shaw, B. E. Frictional weakening and slip complexity on earthquake faults. J. Geophys. Res. 100, 18239–18248 (1995).

    ADS  Google Scholar 

  71. Ben-Zion, Y. & Rice, J. R. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res. 100, 12959–12983 (1995).

    ADS  Google Scholar 

  72. Cochard, A. & Madariaga, R. Complexity of seismicity due to highly rate-dependent friction. J. Geophys. Res. 101, 25321–25336 (1996).

    ADS  Google Scholar 

  73. Ihmlé, P. F. & Jordan, T. H. Teleseismic search for slow precursors to large earthquakes. Science 266, 1547–1550 (1994).

    ADS  PubMed  Google Scholar 

  74. Ihmlé, P. F. Monte Carlo slip inversion in the frequency domain: application to the 1992 Nicaragua slow earthquake. Geophys. Res. Lett. 23, 913–916 (1996).

    ADS  Google Scholar 

  75. Johnson, T. Time-dependent friction of granite: implications for precursory slip on faults. J. Geophys. Res. 86, 6017–6028 (1981).

    ADS  Google Scholar 

  76. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 38, 364–374 (1988).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

Download references

Acknowledgements

I thank L. Sykes and B. Shaw for comments. This work was partially supported by the US Geological Survey.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, C. Earthquakes and friction laws. Nature 391, 37–42 (1998). https://doi.org/10.1038/34097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing