Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient photovoltaic devices for InP semiconductor/liqud junctions

Abstract

AN alternative to conventional solid-state photovoltaic devices is the semiconductor/liquid junction. Liquid-junction cells not only offer the possibility of integrating energy conversion and storage functions1, but also may exhibit electrical properties that are fundamentally different from those in solid-state systems2. We have investigated the photovoltaic behaviour of n-InP/metal and n-InP/liquid junctions. We have found that the electrical properties of these semiconductor/liquid junctions are superior to those of n-InP/metal (Schottky barrier) systems, and that the current-voltage characteristics are a strong function of the electrochemical potential of the liquid phase. Liquid contacts thus provide a possibility for the construction of more efficient photovoltaic devices than those available at present from Schottky barriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Licht, S., Hodes, G., Tenne, R. & Manassen, J. Nature 326, 863–864 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Casagrande, L. G. & Lewis, N. S. J. Am. chem. Soc. 107, 5793–5794 (1985).

    Article  CAS  Google Scholar 

  3. Gronet, C. M. & Lewis, N. S. J. phys. Chem. 88, 1310–1317 (1984).

    Article  CAS  Google Scholar 

  4. Aspnes, D. E. & Studna, A. A. Appl. Phys. Lett. 39, 316–318 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Mead, C. A. & Spitzer, W. G. Phys. Rev. A134, 713–716 (1964).

    Article  ADS  Google Scholar 

  6. Newman, N., Kendelewicz, T., Bowman, L. & Spicer, W. E. Appl. Phys. Lett. 46, 1176–1178 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Kendelewicz, T., Pietro, W. G., Lindau, I. & Spicer, W. E. Appl. Phys. Lett. 44, 1066–1068 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Waldrop, J. R., Kowalczyk, S. P. & Grant, R. W. Appl. Phys. Lett. 42, 454–456 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Brillson, L. J. & Brucker, C. F. J. Vac. Sci. Technol. 21, 564–569 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Fahrenbruch, A. L. & Bube, R. H. Fundamentals of Solar Cells 210–212, 234–240 (Academic, New York, 1983).

    Book  Google Scholar 

  11. Gronet, C. M., Lewis, N. S., Cogan, G. & Gibbons, J. Proc. natn. Acad. Sci. U.S.A. 80, 1152–1156 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Gibbons, J. F., Cogan, G. W., Gronet, C. M. & Lewis, N. S. Appl. Phys. Lett. 45, 1095–1097 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Rosamilia, J. & Miller, B. J. electrochem. Soc. 132, 349–353 (1985).

    Article  CAS  Google Scholar 

  14. Koval, C. A. & Austermann, R. L. J. electrochem. Soc. 132, 2656–2662 (1985).

    Article  CAS  Google Scholar 

  15. McManis, G. E., Golovin, M. N. & Weaver, M. J. J. Am. chem. Soc. 90, 6563–6570 (1986).

    CAS  Google Scholar 

  16. Weaver, M. J. & Gennett, T. Chem. Phys. Lett. 113, 213–218 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Pladziewicz, J. R. & Espenson, J. H. J. Am. chem. Soc. 95, 56–63 (1973).

    Article  CAS  Google Scholar 

  18. Yang, E. S., Chan, M. S. & Wahl, A. C. J. phys. Chem. 84, 3094–3099 (1980).

    Article  CAS  Google Scholar 

  19. Sze, S. M. Physics of Semiconductor Devices, 2nd edn, 250–285 (Wiley, New York, 1981).

    Google Scholar 

  20. Spool, A. M., Daube, K. A., Mallouk, T. E., Belmont, J. A. & Wrighton, M. S. J. Am. chem. Soc. 108, 3155–3157 (1986).

    Article  CAS  Google Scholar 

  21. Gerischer, H. in Physical Chemistry, An Advanced Treatise (eds Eyring, H. Y., Henderson, D. & Yost, W.) 9A, 463–542 (1970).

    Google Scholar 

  22. Kohl, P. A. & Bard, A. J. J. electrochem. Soc. 126, 598–603 (1979).

    Article  CAS  Google Scholar 

  23. Baglio, J. A. et al. J. Am. chem. Soc. 105, 2246–2256 (1983).

    Article  CAS  Google Scholar 

  24. Dominey, R. N. thesis, Mass. Inst. Technol. (1982).

  25. Nagasubramanian, G., Wheeler, B. L. & Bard, A. J. J. electrochem. Soc. 130, 1680–1688 (1983).

    Article  CAS  Google Scholar 

  26. Gronet, C. M. & Lewis, N. S. Appl. Phys. Lett. 43, 115–117 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Offsey, S. D. et al. Appl. Phys. Lett 48, 475–477 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Sandroff, C. J., Nottenburg, R. N., Bischoff, J.-C. & Bhat, R. Appl. Phys. Lett. 51, 33–35 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Yablanovitch, E., Sandroff, C. J., Bhat, R. & Gmitter, T. Appl. Phys. Lett. 51, 439–441 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heben, M., Kumar, A., Zheng, C. et al. Efficient photovoltaic devices for InP semiconductor/liqud junctions. Nature 340, 621–623 (1989). https://doi.org/10.1038/340621a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340621a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing