Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein

Abstract

MAMMALIAN tumours displaying multidrug resistance overexpress a plasma membrane protein (P-glycoprotein), which is encoded by the MDR1 gene1 and apparently functions as an energy-dependent drug efflux pump. Tissue-specific expression of MDR1 and other members of the MDR gene family has been observed in normal cells2, suggesting a role for P-glycoproteins in secretion. We have isolated a gene from the yeast Saccharomyces cerevisiae that encodes a protein very similar to mammalian P-glycoproteins. Deletion of this gene resulted in sterility of MATa, but not of MATα cells. Subsequent analysis revealed that the yeast P-glycoprotein is the product of the STE6 gene, a locus previously shown to be required in MATa cells for production of a-factor pheromone3. Our findings suggest that the STE6 protein functions to export the hydrophobic a-factor lipopeptide in a manner analogous to the efflux of hydrophobic cytotoxic drugs catalysed by the related mammalian P-glycoprotein. Thus, the evolutionarily conserved family of MDR-like genes, including the hlyB gene4 of Escherichia coli and the STE6 gene of S. cerevisiae, encodes components of secretory pathways distinct from the classical, signal sequence-dependent protein translocation system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bradley, G., Juranka, P. F. & Ling, V. Biochim. biophys. Acta 948, 87–128 (1988).

    CAS  PubMed  Google Scholar 

  2. Croop, J. M. et al. Molec. cell. Biol. 9, 1346–1350 (1989).

    Article  CAS  Google Scholar 

  3. Wilson, K. L. & Herskowitz, I. Molec. cell Biol. 4, 2420–2427 (1984).

    Article  CAS  Google Scholar 

  4. Gerlach, J. H. et al. Nature 324, 485–489 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Finley, D. et al. in Ubiquitin (ed. Rechsteiner, M.) 39–75 (Plenum, New York, 1988).

    Book  Google Scholar 

  6. Mackman, N. et al. EMBO J. 6, 2835–2841 (1987).

    Article  CAS  Google Scholar 

  7. Ames, G. F.-L. A. Rev. Biochem. 55, 397–425 (1986).

    Article  CAS  Google Scholar 

  8. Gros, P., Croop, J. & Housman, D. Cell 47, 371–380 (1986).

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Cell 47, 381–389 (1986).

    Article  CAS  Google Scholar 

  10. Dayhoff, M. O., Barker, W. C. & Hunt, T. L. Meth. Enzym. 91, 534–545 (1988).

    Google Scholar 

  11. Eisenberg, D., Schwartz, E., Komaromy, M. & Wall, R. J. molec. Biol. 179, 125–142 (1984).

    Article  CAS  Google Scholar 

  12. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  13. Finley, D., Özkaynak, E. & Varshavsky, A. Cell 48, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  14. Wilson, K. & Herskowitz, I. Genetics 155, 441–449 (1987).

    Google Scholar 

  15. Wilson, K. & Herskowitz, I. Proc. natn. Acad. Sci. U.S.A. 83, 2536–2540 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Michaelis, S. & Powers, S. in Molecular Biology of Intracellular Protein Sorting and Organelle Assembly (eds Bradshaw, R. A., McAlister-Henn, L. & Douglas, M. G.) 193–202 (Liss, New York, 1988).

    Google Scholar 

  17. Anderegg, R. J., Betz, R., Carr, S. A., Crabb, J. W. & Duntze, W. J. biol. Chem. 263, 18236–18240 (1988).

    CAS  PubMed  Google Scholar 

  18. Sterne, R. E. & Thorner, J. J. Cell Biol. 103, 189a (1986).

    Article  Google Scholar 

  19. Julius, D., Schekman, R. & Thorner, J. Cell 36, 309–318 (1984).

    Article  CAS  Google Scholar 

  20. Rank, G. H., Robertson, A. J. & Phillips, K. L. Genetics 80, 483–493 (1975).

    CAS  PubMed Central  Google Scholar 

  21. Balzi, E., Chen, W., Ulaszewski, S., Capieaux, E. & Goffeau, A. J. biol. Chem. 262, 16871–16879 (1987).

    CAS  PubMed  Google Scholar 

  22. Ulaszewski, S., Balzi, E. & Goffeau, A. Mol. gen. Genet. 10, 359–364 (1986).

    CAS  Google Scholar 

  23. March, C. J. et al. Nature 315, 641–647 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Bursten, S. L., Locksley, R. M., Ryan, J. L. & Lovett, D. H. J. clin. Invest. 82, 1479–1488 (1988).

    Article  CAS  Google Scholar 

  25. Singer, I. I. et al. J. exp. Med. 167, 389–407 (1988).

    Article  CAS  Google Scholar 

  26. Johnson, A. D. & Herskowitz, I. Cell 42, 237–247 (1985).

    Article  CAS  Google Scholar 

  27. Kronstad, J. W., Holly, J. A. & MacKay, V. L. Cell 50, 369–377 (1987).

    Article  CAS  Google Scholar 

  28. Zaret, K. S. & Sherman, F. Cell 28, 563–573 (1982).

    Article  CAS  Google Scholar 

  29. Zalkin, H., Paluh, J. L., van Cleemput, M., Moye, W. S. & Yanofsky, C. J. biol. Chem. 259, 3985–3992 (1984).

    CAS  PubMed  Google Scholar 

  30. Mortimer, R. K. & Schild, D. in The Molecular Biology of the Yeast Saccharomyces. I. Life Cycle and Inheritance (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 641–651 (Cold Spring Harbor Laboratory, New York, 1981).

    Google Scholar 

  31. Özkaynak, E. & Putney, S. D. Biotechniques 5, 770–773 (1987).

    Google Scholar 

  32. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  33. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  34. Chan, R. K. & Otte, C. A. Molec. cell Biol. 2, 11–20 (1982).

    Article  CAS  Google Scholar 

  35. Sherman, F., Fink, G. R. & Lawrence, C. W. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, J., Varshavsky, A. The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340, 400–404 (1989). https://doi.org/10.1038/340400a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340400a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing