Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast

Abstract

ALTHOUGH single heterozygous markers in yeast usually segregate during meiosis in a 2:2 ratio, abberant 3:1 segregations occur quite frequently as a result of gene-conversion events1. A second type of aberrant segregation, post-meiotic segregation, results from the segregation of two genotypes from a single haploid spore; in yeast such events are detected as sectored spore colonies2 and usually occur rarely1. Post-meiotic segregation is thought to result from the replication of heteroduplex DNA formed during meiotic recombination. We report here that if the heteroduplex includes a palindromic insertion sequence, a high frequency of post-meiotic segregation results. This suggests that palindromic insertions are poorly repaired, which may be the result of hairpin-loop formation that affects the efficiency of repair of heteroduplex DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fogel, S., Mortimer, R. K. & Lusnak, K. in The Molecular Biology of the Yeast Saccharomyces (eds Strathern, J., Jones, E. W. & Broach, J.) Vol. I, 289–339 (Cold Spring Harbor Laboratory, New York, 1981).

    Google Scholar 

  2. Esposito, M. S. Molec. gen. Genet. 111, 297–299 (1971).

    Article  CAS  Google Scholar 

  3. Meselson, M. & Radding, C. Proc. natn. Acad. Sci. U.S.A. 72, 358–361 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Holiday, R. Genet. Res. 5, 282–304 (1984).

    Article  Google Scholar 

  5. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. Cell 33, 25–35 (1983).

    Article  CAS  Google Scholar 

  6. Symington, L. S. & Petes, T. D. Molec. cell. Biol. 8, 595–604 (1988).

    Article  CAS  Google Scholar 

  7. Borts, R. H. & Haber, J. E. Science 237, 1459–1465 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Brent, R. & Ptashne, M. Nature 312, 612–615 (1984).

    Article  ADS  CAS  Google Scholar 

  9. White, J. H., Lusnak, K. & Fogel, S. Nature 315, 350–352 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Williamson, M. S., Game, J. C. & Fogel, S. Genetics 110, 609–646 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gough, G. W., Sullivan, K. M. & Lilley, D. M. J. EMBO J. 5, 191–196 (1986).

    Article  CAS  Google Scholar 

  12. Cigan, A. M., Pabich, E. K. & Donahue, T. F. Molec. cell. Biol. 8, 2964–2975 (1988).

    Article  CAS  Google Scholar 

  13. Dasgupta, U., Weston-Hafer, K. & Berg, D. E. Genetics 115, 41–49 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Glickman, B. W. & Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 81, 512–516 (1984).

    Article  ADS  CAS  Google Scholar 

  15. McClain, W. H. J. molec. Biol. 204, 27–40 (1988).

    Article  CAS  Google Scholar 

  16. Warren, G. J. & Green, R. L. J. Bacteriol. 161, 1103–1111 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fink, G. J. & Styles, C. A. Genetics 77, 231–244 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Scherer, S. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 76, 4951–4955 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  20. Newlon, C. et al. UCLA Symp. molec. cell. Biol. 33, 211–223 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nag, D., White, M. & Petes, T. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340, 318–320 (1989). https://doi.org/10.1038/340318a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340318a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing