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NEWS AND VIEWS 

Quasi crystals stabilized by entropy 
Fivefold symmetry in the solid state remains a puzzle, if only because credible realizations are statistically special 
structures. But now it seems likely that they are not so special. 

WHATEVER happened to quasicrystals? 
More than four years have gone by since 
it was first reported by Steinhardt and 
Schechtman and their colleagues (see 
Nature 313, 263; 1985) that alloys of 
manganese and aluminium may crystallize 
with what appears to be fivefold sym
metry, as inferred from X-ray and elec
tron diffraction. The development was 
surprising because crystal lattices with 
fivefold symmetry are incompatible with 
the translational symmetry of infinite 
crystals. Even after five years, it remains 
unclear why they exist. 

There are several schemes for arranging 
atoms in ways that would give diffraction 
patterns fivefold symmetry, the simplest 
of which (in two dimensions) is the Penrose 
tiling of the plane by copies of two rhombi, 
the sides of which are equal, but which are 
respectively thin and fat. There have also 
been three-dimensional generalizations of 
the Penrose tiling, involving not merely 
the predictable icosahedra (platonic solids 
with natural pentagonal symmetry) but 
others with names such as tricontrahedra. 

The geometrical details of these 
arrangements are enough to have people 
reaching for their scratch pads, but the 
two-dimensional case is sufficiently 
taxing. If one supposes that each vertex of 
a rhombus, thin or fat, is occupied by an 
atom, it is possible to calculate that the 
diffraction pattern will have fivefold 
symmetry. The essence of the case is that 
these arrangements are not crystalline in 
the sense that it is not possible to shift the 
pattern in some direction and find that the 
result coincides with the original, but they 
are quasi-periodic in the sense that dis
placements relative to the length of the 
rhombus side by the 'golden mean' will 
substantially regenerate the pattern. 

Theoreticians have spent much of the 
past four years looking for neat ways of 
representing the positions of the vertices 
in such patterns. The best techniques are 
those in which a two- (or three-) dimen
sional pattern is regarded as the projection 
onto a two-dimensional plane (or a three
dimensional space) of an array of po in ts in 
a hypothetical lattice with a greater 
number of dimensions. For example, the 
Penrose tiling is the intersection of a plane 
with an array of points in a regular cubic 
lattice with five dimensions. Other less 
regular tiling planes would show up when 
a suitable plane is drawn through a five
dimensional lattice in which there is an 
appropriate and well-defined array of 
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points. 
Helped by stratagems such as these, 

many people have spent much of the past 
four years calculating all kinds of proper
ties of quasi crystals. The exercise has 
been entertaining for all concerned, but 
not especially illuminating. Put simply, 
the Penrose tiling and its analogues show 
that it is indeed possible to construct 
arrays of atoms which are infinite in 
extent, which have no essential defects 
and which are stable, but nobody is much 
the wiser for knowing that. The essential 
difficulty is that these regular structures are 
highly special structures. Indeed, their 
construction by projection from, say, a 
five-dimensional array in which not all the 
points are occupied onto, say, a two
dimensional slice taken through it shows 
just that: the original array must be pre
defined, as must the orientation of the 
slice. Why should arrays of real atoms 
crystallizing from a high-temperature melt 
choose to dispose themselves in such a 
special way when there is no compelling 
energetic advantage in the arrangement? 

That is part of the reason why it has 
recently seemed that the physics of the 
quasicrystalline state has been heading for 
a dead end, but now there are some signs 
of life. Indeed, two separate groups, 
apparently independently of each other, 
have produced calculations of remarkably 
similar systems comprising atoms of two 
species, and have been able, by different 
methods, to arrive at a convincing demon
stration that the stability of real quasi
crystalline systems arises not because of 
some decisive energetic advantage but 
because of the large entropy of these 
systems. Any specified and ideal quasi
crystalline array will be but one of a host of 
arrays with essentially the same energy, 
and which are thus degenerate in the 
technical sense. An apparently essential 
criterion is that the two species of atoms 
should differ markedly from each other in 
size. 

The two calculations appear consecu
tively in the current issue of Physical Review 
Letters. M. Widom and D.P. Deng from 
the Carnegie-Mellon Institute and c.L. 
Henley from Boston University (63, 310; 
1989) and, separately, Katherine l. 
Strandburg (Argonne National Labora
tory), Lei-Han Tang and Marko V. laric 
from Texas A & M (63, 314; 1989), start 
with essentially the same system of a 
mixture of large and small atoms in a 
planar array which interact by means of 

Lennard-lones potentials. Given that 
both articles were apparently received at 
Brookhaven on 15 September last year, 
one is tempted wonder whether represen
tatives of the two groups had arranged to 
despatch their manuscripts from the same 
airport overnight courier office, although 
geography may have complicated such an 
arrangement. Whatever the mechanics, 
the papers read together have the virtue of 
filling each other's gaps. 

Widom et al. state the problem the more 
clearly. They choose the radii of their 
atoms (in two dimensions) so that ten 
small atoms will fit around the circumfer
ence of one large atom, and so that five 
large atoms will fit around one small atom. 
(Strandburg and her colleagues achieve an 
essentially similar effect by adjusting the 
parameters in their Lennard-lones expres
sions.) It is then possible to define pairs of 
thin and fat rhombi on the Penrose model 
by joining the centres of pairs of contig
uous large (or small) atoms with the 
centres of small (or large) atoms arranged 
symmetrically on either side of them. 
Each group then uses five-dimensional 
space to define the positions of the large 
and small atoms. "Random tiling" is the 
name they use to describe what it is doing. 

Standburg and her colleagues carry out 
a Monte Carlo calculation of such a system 
which, as elsewhere in solid-state physics, 
means that they swap structures represen
ting local groups of atoms in such a way as 
not to change the overall properties of the 
system, the ratio of large to small atoms 
for example. More abstractly, Widom and 
his colleagues set out to calculate the 
thermodynamic properties of a piece of 
two-dimensional lattice (wrapped into a 
cylinder for consistency) by allowing for 
all possible interactions between one row 
and its neighbours (which entails, among 
other things, enumerating all possible 
configurations of a row). 

The outcome is satisfactory agreement. 
Each group concludes that its model will 
yield long-range order and sharp diffrac
tion peaks. Widom and his colleagues are 
the more explicit in their declaration that 
entropy rather than crude energetics 
determines the stability of their alloys, but 
the two groups agree in their estimates of 
the degree to which this is likely to be the 
case. Widom and his colleagues modestly 
add: "It is even conceivable that such a 
model couid apply to real quasicrystalline 
materials in thermal equilibrium". 
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