Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars


NEUTRON-STAR collisions occur inevitably when binary neutron stars spiral into each other as a result of damping of gravitational radiation. Such collisions will produce a characteristic burst of gravitational radiation, which may be the most promising source of a detectable signal for proposed gravity-wave detectors1. Such signals are sufficiently unique and robust for them to have been proposed as a means of determining the Hubble constant2. However, the rate of these neutron-star collisions is highly uncertain3. Here we note that such events should also synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process)4. Furthermore, these collisions should produce neutrino bursts5 and resultant bursts of γ-rays; the latter should comprise a subclass of observable γ-ray bursts. We argue that observed r-process abundances and γ-ray-burst rates predict rates for these collisions that are both significant and consistent with other estimates.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Clark, J. P. A. & Eardley, D. M. Astrophys. J. 215, 311–322 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Shutz, B. F. in Gravitational Collapse and Gravity (eds Sato, H. & Nakamura, T.) 246–253 (Singapore World Scientific, 1986).

    Google Scholar 

  3. Clark, J. P. A., van den Heuvel, E. P. J. & Sutantyo, W. Astr. Astrophys. 72, 120–128 (1979).

    ADS  Google Scholar 

  4. Lattimer, J. & Schramm, D. N. Astrophys. J. 210, 549–556 (1976).

    Article  ADS  Google Scholar 

  5. Berezinsky, V. & Prilutski, P. Proc. 19th Int. Cosmic Ray Conf. 1, 29–32 (La Jolla, 1985).

    ADS  Google Scholar 

  6. Grindlay, J. E. & Bailyn, C. D. Nature 336, 48–50 (1988).

    Article  ADS  Google Scholar 

  7. Ostriker, J. P. Sources of Gravitational Radiation (ed. Smarr, L. L.) 461–476 (Cambridge University Press, 1979).

    Google Scholar 

  8. Alpar, M. A., Cheng, A.F., Ruderman, M. A. & Shaham, J. Nature 300, 728–730 (1982).

    Article  ADS  Google Scholar 

  9. Clark, J. P. A. Sources of Gravitational Radiation (ed. Smarr, L. L.) 447–459 (Cambridge University Press, 1979).

    Google Scholar 

  10. Arnett, W. D. & Bowers, R. L. Astrophys. J. Suppl. 33, 415–436 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Webbnik, R. F. Astrophys. J. 277, 355–360 (1984).

    Article  ADS  Google Scholar 

  12. Mochkovitch, R. & Livio, M. Astr. Astrophys. 209, 111–118 (1989).

    ADS  CAS  Google Scholar 

  13. Benz, W., Bowers, R. L., Cameron, A. G. W. & Press, W. H. Astrophys. J. (in the press).

  14. Itoh, N., Kohyama, Y. & Takenchi, H. Astrophys. J. 317, 733–736 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Webbink, R. F. & Iben, I. Jr in IAU Colloq. 95, The Second Conference on Faint Blue Star (eds Davis Philip, A. G., Hayes, D. S. & Liebert, J. W. 778 (L. Davis Press, Schenectady, 1987).

    Google Scholar 

  16. Page, D. N. Phys. Lett. A 91, 201–202 (1982).

    Article  ADS  Google Scholar 

  17. Shapiro, S. in Numerical Astrophysics (eds Centrella, J., Leblanc, J. & Bowers, R.) 190, 215 (Bertlett, Boston, 1985).

    Google Scholar 

  18. Colpi, M., Shapiro, S. L. & Teukolsky, S. A. Astrophys. J. (in the press).

  19. Lattimer, J. M., Mackie, F., Ravenhall, D. G. & Schramm, D. N. Astrophys. J. 213, 225–233 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Meyer, B. Astrophys. J. (in the press).

  21. Symbalisty, E. M. D. & Schramm, D. N. Astrophys. Lett. 22, 132–145 (1982).

    Google Scholar 

  22. Burbidge, E. M., Burbidge, C. A., Fowler, W. A. & Hoyle, F. Rev. mod. Phys. 29, 547–650 (1957).

    Article  ADS  Google Scholar 

  23. Norman, E. & Schramm, D. N. Astrophys. J. 228, 881–892 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Cameron, A. G. W., Cowan, J. & Truran, J. in Nucleosynthesis (eds Arnett, W. D. & Truran, J.) 190–201 (University of Chicago Press, 1985).

    Google Scholar 

  25. Berezinsky, V. & Prilutski, F. Proc. 20th Int. Cosmic Ray Conf. 1, 54–68 (Moscow, 1987).

    ADS  Google Scholar 

  26. Goodman, J. Astrophys. J. 308, L47–L50 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Babul, A., Paczynski, B. & Spergel, D. N. Astrophys. J. 316, L49–L54 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs and Neutron Stars (Wiley, New York, 1983).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eichler, D., Livio, M., Piran, T. et al. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing