Letter

Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars

Received:
Accepted:
Published online:

Abstract

NEUTRON-STAR collisions occur inevitably when binary neutron stars spiral into each other as a result of damping of gravitational radiation. Such collisions will produce a characteristic burst of gravitational radiation, which may be the most promising source of a detectable signal for proposed gravity-wave detectors1. Such signals are sufficiently unique and robust for them to have been proposed as a means of determining the Hubble constant2. However, the rate of these neutron-star collisions is highly uncertain3. Here we note that such events should also synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process)4. Furthermore, these collisions should produce neutrino bursts5 and resultant bursts of γ-rays; the latter should comprise a subclass of observable γ-ray bursts. We argue that observed r-process abundances and γ-ray-burst rates predict rates for these collisions that are both significant and consistent with other estimates.

References

  1. 1.

    & Astrophys. J. 215, 311–322 (1977).

  2. 2.

    in Gravitational Collapse and Gravity (eds Sato, H. & Nakamura, T.) 246–253 (Singapore World Scientific, 1986).

  3. 3.

    , & Astr. Astrophys. 72, 120–128 (1979).

  4. 4.

    & Astrophys. J. 210, 549–556 (1976).

  5. 5.

    & Proc. 19th Int. Cosmic Ray Conf. 1, 29–32 (La Jolla, 1985).

  6. 6.

    & Nature 336, 48–50 (1988).

  7. 7.

    Sources of Gravitational Radiation (ed. Smarr, L. L.) 461–476 (Cambridge University Press, 1979).

  8. 8.

    , , & Nature 300, 728–730 (1982).

  9. 9.

    Sources of Gravitational Radiation (ed. Smarr, L. L.) 447–459 (Cambridge University Press, 1979).

  10. 10.

    & Astrophys. J. Suppl. 33, 415–436 (1977).

  11. 11.

    Astrophys. J. 277, 355–360 (1984).

  12. 12.

    & Astr. Astrophys. 209, 111–118 (1989).

  13. 13.

    , , & Astrophys. J. (in the press).

  14. 14.

    , & Astrophys. J. 317, 733–736 (1987).

  15. 15.

    & in IAU Colloq. 95, The Second Conference on Faint Blue Star (eds Davis Philip, A. G., Hayes, D. S. & Liebert, J. W. 778 (L. Davis Press, Schenectady, 1987).

  16. 16.

    Phys. Lett. A 91, 201–202 (1982).

  17. 17.

    in Numerical Astrophysics (eds Centrella, J., Leblanc, J. & Bowers, R.) 190, 215 (Bertlett, Boston, 1985).

  18. 18.

    , & Astrophys. J. (in the press).

  19. 19.

    , , & Astrophys. J. 213, 225–233 (1977).

  20. 20.

    Astrophys. J. (in the press).

  21. 21.

    & Astrophys. Lett. 22, 132–145 (1982).

  22. 22.

    , , & Rev. mod. Phys. 29, 547–650 (1957).

  23. 23.

    & Astrophys. J. 228, 881–892 (1979).

  24. 24.

    , & in Nucleosynthesis (eds Arnett, W. D. & Truran, J.) 190–201 (University of Chicago Press, 1985).

  25. 25.

    & Proc. 20th Int. Cosmic Ray Conf. 1, 54–68 (Moscow, 1987).

  26. 26.

    Astrophys. J. 308, L47–L50 (1986).

  27. 27.

    , & Astrophys. J. 316, L49–L54 (1987).

  28. 28.

    & Black Holes, White Dwarfs and Neutron Stars (Wiley, New York, 1983).

Download references

Author information

Affiliations

  1. Department of Physics, Ben Gurion University, Beer Sheva, Israel, and Astronomy Program, University of Maryland, College Park, Maryland 20742, USA

    • David Eichler
  2. Department of Physics, The Technion, Haifa, Israel

    • Mario Livio
  3. Racah Institute for Physics, Hebrew University, Jerusalem, Israel, and Princeton University Observatory, Princeton, New Jersey 08544, USA

    • Tsvi Piran
  4. Departments of Physics and Astrophysics, University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637, USA, and NASA/Fermilab Astrophysics Center, Batavia, Illinois 60510, USA

    • David N. Schramm

Authors

  1. Search for David Eichler in:

  2. Search for Mario Livio in:

  3. Search for Tsvi Piran in:

  4. Search for David N. Schramm in: