Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction

Abstract

RAPID, transient induction of the human c-fos proto-oncogene by extracellular signals requires the presence in els of the serum response element (SRE)1,2. Two protein factors that bind to the SRE in vitro are the serum response factor (p67SRF)3—5 and polypeptide p62 (ref. 6). These polypeptides must interact with one another and the SRE for efficient serum induction of the c-fos gene6. Here we use dimethyl sulphate genomic footprinting7 to establish the in vivo protein contacts on the SRE and flanking sequences. In human A431 cells the patterns of protection and hyper-reactivity that we find are consistent with the presence of p67SRF, p62, and at least one other protein immediately 3' to p67SRF. The protein-DNA contacts we observe within the SRE are present before induction by epidermal growth factor and are unchanged during gene activation and subsequent repression. Our results indicate that a specific DNA—protein architecture may be maintained at the c-fos SRE, regardless of changes in the transcriptional state of the gene. Such established structures could be important generally in rapid transcriptional responses to extracellular signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaw, P. E., Hipskind, R. A., Schröter, H. & Nordheim, A. in Nucleic Acids and Molecular Biology Vol. 3, 120–132 (Springer, Heidelberg, 1989).

    Book  Google Scholar 

  2. Treisman, R. Cell 42, 889–902 (1985).

    Article  CAS  Google Scholar 

  3. Treisman, R. Cell 46, 567–574 (1986).

    Article  CAS  Google Scholar 

  4. Prywes, R. & Roeder, R. G. Molec. cell. Biol. 7, 3482–3489 (1987).

    Article  CAS  Google Scholar 

  5. Schröter, H., Shaw, P. E. & Nordheim, A. Nucleic Acids Res. 15, 10145–10158 (1987).

    Article  Google Scholar 

  6. Shaw, P.E., Schröter, H. & Nordheim, A. Cell 56, 563–572 (1989).

    Article  CAS  Google Scholar 

  7. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Jones, N. C., Rigby, P. W. J. & Ziff, E. B. Genes Dev. 2, 267–281 (1988).

    Article  CAS  Google Scholar 

  9. Sassone-Corsi, P., Sisson, J. C. & Verma, I. M. Nature 334, 314–319 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Wilson, T. & Treisman, R. EMBO J. 7, 4193–4202 (1988).

    Article  CAS  Google Scholar 

  11. Schönthal, A. et al. Oncogene (in the press).

  12. Hayes, T. E., Kitchen, A. M. & Cochran, B. H. Proc. natn. Acad. Sci. U.S.A. 84, 1272–1276 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Bravo, R., Burckhardt J., Curran, T. & Müller, R. EMBO J. 4, 1193–1197 (1985).

    Article  CAS  Google Scholar 

  14. McKnight, J. L. C., Kristie, T. M. & Roizman, B. Proc. natn. Acad. Sci. U.S.A. 84, 7061–7065 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Bender, A. & Sprague Jr. G. F. Cell 50, 681–691 (1987).

    Article  CAS  Google Scholar 

  16. Bell, S. P., Learned, E. M., Jantzen, H.-M. & Tjian, R. Science 241, 1192–1197 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Becker, P. B., Gloss, B., Schmid, W., Strähle, U. & Schütz, G. Nature 324, 686–688 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Zinn, K. & Maniatis, T. Cell 45, 611–618 (1986).

    Article  CAS  Google Scholar 

  19. Thomas, G. H. & Elgin, S. C. R. EMBO J. 7, 2191–2201 (1988).

    Article  CAS  Google Scholar 

  20. Mueller, P. R., Salser, S. J. & Wold, B. Genes Dev. 2, 412–427 (1988).

    Article  CAS  Google Scholar 

  21. Prywes, R. & Roeder, R. G. Cell 47, 777–784 (1986).

    Article  CAS  Google Scholar 

  22. Jackson, P. D. & Felsenfeld, G. Proc. natn. Acad Sci. U.S.A. 82, 2296–2300 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Becker, P. B., Ruppert, S. & Schütz, G. Cell 51, 435–443 (1987).

    Article  CAS  Google Scholar 

  24. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  25. Weih, F., Stewart, A. F. & Schütz, G. Nucleic Acids Res. 16, 1628 (1988).

    Article  CAS  Google Scholar 

  26. Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) (Greene, New York, 1987).

  27. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, R., Shaw, P. & Nordheim, A. Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340, 68–70 (1989). https://doi.org/10.1038/340068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing