Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution

Abstract

The calcium pump from sarcoplasmic reticulum (Ca2+-ATPase) is typical of the large family of P-type cation pumps. These couple ATP hydrolysis with cation transport, generating cation gradients across membranes. Ca2+-ATPase specifically maintains the low cytoplasmic calcium concentration of resting muscle by pumping calcium into the sarcoplasmic reticulum; subsequent release is used to initiate contraction. No high-resolution structure of a P-type pump has yet been determined, although a 14-Å structure ofCa2+-ATPase, obtained by electron microscopy of frozen-hydrated, tubular crystals1, showed a large cytoplasmic head connected to the transmembrane domain by a narrow stalk. We have now improved the resolution to 8 Å and can discern ten transmembrane α-helices, four of which continue into the stalk. On the basis of constraints from transmembrane topology, site-directed mutagenesis and disulphide crosslinking, we have made tentative assignments for these α-helices within the amino-acid sequence. A distinct cavity leads to the putative calcium-binding site, providing a plausible path for calcium release to the lumen of the sarcoplasmic reticulum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+-ATPase density map at 8-Å resolution.
Figure 2: Density cross-sections through the transmembrane and stalk of Ca2+-ATPase.
Figure 3: Transmembrane architecture of Ca2+-ATPase.
Figure 4: Variability within the transmembrane sequences of P-type ion pumps.
Figure 5: Alternative sequence assignments for the transmembrane helices.

Similar content being viewed by others

References

  1. Toyoshima, C., Sasabe, H. & Stokes, D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362, 469–471 (1993).

    Article  ADS  Google Scholar 

  2. Dux, L. & Martonosi, A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J. Biol. Chem. 258, 2599–2603 (1983).

    CAS  PubMed  Google Scholar 

  3. Taylor, K. A., Dux, L. & Martonosi, A. Three-dimensional reconstruction of negatively stained crystals of the Ca++-ATPase from muscle sarcoplasmic reticulum. J. Mol. Biol. 187, 417–427 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Stokes, D. L. & Lacapere, J.-J. Conformation of Ca2+-ATPase in two crystal forms: Effects of Ca2+, thapsigargin, AMP-PCP, and Cr-ATP on crystallization. J. Biol. Chem. 269, 11606–11613 (1994).

    CAS  PubMed  Google Scholar 

  5. Hua, S., Malak, H., Lakowicz, J. R. & Inesi, G. Synthesis and interaction of fluorescent thapsigargin derivatives with the carcoplasmic reticulum ATPase membrane-bound region. Biochemistry 34, 5137–5142 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sagara, Y., Wade, J. B. & Inesi, G. Aconformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J. Biol. Chem. 267, 1286–1292 (1992).

    CAS  PubMed  Google Scholar 

  7. MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316, 696–700 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Moller, J. V., Juul, B. & le Maire, M. Structural organization, ion transport, and energy transduction of ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996).

    Article  PubMed  Google Scholar 

  9. MacLennan, D. H., Rice, W. J. & Green, N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+ ATPases. J. Biol. Chem. 272, 28815–28818 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Gadsby, D. C., Rakowski, R. F. & De Weer, P. Extracellular access to the Na, K pump: Pathway similar to ion channel. Science 260, 100–103 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hilgemann, D. W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science 263, 1429–1432 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Stokes, D. L., Taylor, W. R. & Green, N. M. Structure, transmembrane topology and helix packing of P-type ion pumps. FEBS Lett. 346, 32–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Andersen, J. P. Dissection of the functional domains of the sarcoplasmic reticulum Ca2+-ATPase by site-directed mutagenesis. Biosci. Rep. 15, 243–261 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Rice, W. J. & MacLennan, D. H. Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a). J. Biol. Chem. 271, 31412–31419 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, L. et al. Short and long range functions of amino acids in the transmembrane region of the sarcoplasmic reticulum ATPase: a mutational study. J. Biol. Chem. 271, 10745–10752 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Rice, W. J. & MacLennan, D. H. Site-directed disulfide mapping of helices M4 and M6 in the Ca2+ binding domain of SERCA1a, the Ca2+ATPase of fast-twitch skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 272, 31412–31419 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Baldwin, J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green, N. M. in The Sodium Pump: Structure, Mechanisms, Hormonal Control and its Role in Disease (eds Bamberg, E. & Schoner, W.) 110–119 (Steinkopff, Darmstadt, 1994).

    Book  Google Scholar 

  20. Matthews, I., Sharma, R. P., Lee, A. G. & East, J. M. Transmembranous organization of (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum: evidence for lumenal location of residues 877–888. J. Biol. Chem. 265, 18737–18740 (1990).

    CAS  PubMed  Google Scholar 

  21. Clarke, D. M., Loo, T. W. & MacLennan, D. H. The epitope for monoclonal antibody A20 (amino acids 870–890) is located on the luminal surface of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 265, 17405–17408 (1990).

    CAS  PubMed  Google Scholar 

  22. Beroukhim, R. & Unwin, N. Distortion correction of tubular crystals: Improvements in the acetylcholine receptor structure. Ultramicroscopy 70, 57–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Tani, K., Sasabe, H. & Toyoshima, C. Aset of computer programs for determining defocus and astigmatism in electron images. Ultramicroscopy 65, 31–44 (1997).

    Article  Google Scholar 

  24. Toyoshima, C., Yonekura, K. & Sasabe, H. Contrast transfer for frozen-hydrated specimens: II. Amplitude contrast at very low frequencies. Ultramicroscopy 48, 165–176 (1993).

    Article  Google Scholar 

  25. Green, N. M. ATP-driven cation pumps: alignment of sequences. Biochem. Soc. Trans. 17, 970–972 (1989).

    CAS  Google Scholar 

  26. Guerini, D., Foletti, D., Vellani, F. & Carofoli, E. Mutation of conserved residues in transmembrane domains 4, 6, and 8 causes loss of Ca2+ transport by the plasma membrane Ca2+ pump. Biochemistry 35, 3290–3296 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Beroukhim and N. Unwin for the use of their programs for helical image analysis, and G. Inesi for the dansyl thapsigargin. This work was partly supported by the NIH and the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Stokes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Toyoshima, C., Yonekura, K. et al. Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature 392, 835–839 (1998). https://doi.org/10.1038/33959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33959

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing