The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period

Abstract

THE isolation and characterization of single gene mutations affecting the circadian biological clocks of several organisms (reviewed in ref. 1) has left little doubt that circadian rhythms can be subjected to classical genetical analysis. Many of these mutations occur at the same few genetic loci (frequency (frq) in the fungus Neurospora2, and period (per) in fruit fly Drosophila3); these loci represent the best studied clock-affecting genes known. Mutant strains are usually affected in more than one basic clock property1,4, suggesting an inter-relatedness at the molecular level among these basic properties that would not have been predicted a priori. The extensive background information available concerning the frq locus4 provides a basis for the molecular dissection of the Neurospora circadian clock—the most minimal circadian system thus far described. We report here the cloning and analysis of the frq locus and show it to be larger and more complex than would have been predicted from the available genetic data. Complete rescue of all of the pleiotropic mutant phenotypes5,6 of the recessive frq9 allele requires transformation with a 7.7-kilobase (kb) region of DNA encoding at least two transcripts. Sequence analysis of this region has allowed the identification of a common element between frq and per which, given the background similarities in their classical genetic characteristics, suggests the possibility of a common element in the clock mechanisms of these two organisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hall, J. C. & Rosbash, M. A. Rev. Neurosci. 11, 373–393 (1988).

  2. 2

    Gardner, G. F. & Feldman, J. F. Genetics 96, 877–886 (1980).

  3. 3

    Konopka, R. J. Fed. Proc. 38, 2602–2605 (1979).

  4. 4

    Feldman, J. F. & Dunlap, J. C. Photochem. Photobiol. Rev. 7, 319–368 (1983).

  5. 5

    Loros, J. J. & Feldman, J. F. J. biol. Rhythms 1, 187–198 (1986).

  6. 6

    Loros, J. J., Richman, A. R. & Feldman, J. F. Genetics 14, 1095–1110 (1986).

  7. 7

    Viebrock, A., Perz, A. & Siebald, W. A. EMBO J. 1, 565–571 (1982).

  8. 8

    Perkins, D. D., Radford, A., Newmeyer, D. & Bjorkman, M. Microbiol. Rev. 46, 426–570 (1982).

  9. 9

    Vollmer, S. J. & Yanofsky, C. Proc. natn. Acad. Sci. U.S.A. 83, 1–5 (1986).

  10. 10

    Metzenberg, R. L., Stevens, J. N., Selker, E. U. & Morzycka-Wroblewska, E. Proc. natn. Acad. Sci. U.S.A. 82, 2067–2071 (1985).

  11. 11

    Tinoco, I. et al. Nature New Biol. 246, 40–41 (1973).

  12. 12

    Kozak, M. Molec. cell. Biol. 8, 2737–2744 (1988).

  13. 13

    Orbach, M. J., Porro, E. A. & Yanofsky, C. Molec. cell. Biol. 6, 2452–2461 (1986).

  14. 14

    Pearson, W. R. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

  15. 15

    Lipman, W. J. & Pearson, W. R. Science 227, 1435–1441 (1985).

  16. 16

    Doolittle, R. F. Of URFs and ORFS (University Science Books, Mill Valley, 1986).

  17. 17

    Jackson, F. R., Bargiello, T. A., Yun, S. H. & Young, M. W. Nature 320, 185–188 (1986).

  18. 18

    Citri, Y. et al. Nature 326, 42–47 (1987).

  19. 19

    Reddy, P., Jacquier, A. C., Abovich, N., Petersen, G. & Rosbach, M. Cell 46, 53–61 (1986).

  20. 20

    Gonzalez, G. A. et al. Nature 337, 749–752 (1989).

  21. 21

    Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5, suppl. 3. (ed. Dayhoff, M. O.) 1–8 (Natn. biomed. Res. Found., Silver Spring, 1978).

  22. 22

    Shin, H. S., Bargiello, T. A., Clark, B. T., Jackson, F. R. & Young, M. W. Nature 317, 445–448 (1985).

  23. 23

    Weber, M. L., deGroot, E. J. & Schweiger, H. G. Molec. gen. Genet. 209, 1–7 (1987).

  24. 24

    McClung, R. M., Phillips, J. D., Orbach, M. J. & Dunlap, J. C. Expl. Mycol. (in the press).

  25. 25

    Davis, R. L. & deSerres Meth. Enzym. 71A, 79–143 (1970).

  26. 26

    Dunlap, J. C. & Feldman, J. F. Proc. Natn. Acad. Sci. U.S.A. 85, 1096–1100 (1988).

  27. 27

    Loros, J. J., Denome, S. & Dunlap, J. C. Science 243, 385–388 (1989).

  28. 28

    Hu, N. & Messing, J. Gene 17, 271–277 (1982).

  29. 29

    Feng, D. F., Johnson, M. S. & Doolittle, R. F. J. molec. Evol. 21, 1112–125 (1985).

  30. 30

    Schwartz, R. M. & Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 353–358 (Natn. biomed. Res. Found, Silver Spring, 1978).

  31. 31

    Henikoff, S. Gene 28, 351–359 (1984).

  32. 32

    Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

  33. 33

    Myers, E. & Miller, W. CABIOS 4, 11–17 (1988).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McClung, C., Fox, B. & Dunlap, J. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 339, 558–562 (1989). https://doi.org/10.1038/339558a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.