Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic activation of endothelial nitric oxide synthase by Hsp90

Abstract

Heat-shock protein 90 (Hsp90) coordinates the trafficking and regulation of diverse signalling proteins, but its precise role in regulating specific cellular targets is not known1,2. Here we show that Hsp90 associates with endothelial nitric oxide synthase (eNOS) and is rapidly recruited to the eNOS complex by agonists that stimulate production of nitric oxide, namely vascular endothelial growth factor, histamine and fluid shear stress. Moreover, the binding of Hsp90 to eNOS enhances the activation of eNOS. Inhibition of signalling through Hsp90 attenuates both agonist-stimulated production of nitric oxide and endothelium-dependent relaxation of isolated blood vessels. Our results indicate that Hsp90 facilitates signalling mediated by growth-factor, G-protein and mechanotransduction pathways that lead to the activation of eNOS. These observations indicate that in addition to its role as a molecular chaperone involved in protein folding and maturation, Hsp90 may also be recruited to cellular targets depending on the activation state of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association between eNOS and Hsp90.
Figure 2: Overexpression of Hsp90 increases eNOS activity.
Figure 3: Direct interaction and activation of eNOS by Hsp90.
Figure 4: The stimulus-dependent association of Hsp90 and eNOS.
Figure 5: Role of Hsp90 in stimulated NO release and endothelium-dependent relaxations of rat aorta.

Similar content being viewed by others

References

  1. Rutherford, S. L. & Zucker, C. S. Protein folding and the regulation of signaling pathways. Cell 79, 1129–1132 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, J. L. & Craig, E. A. Protein folding in vivo: unraveling complex pathways. Cell 90, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Pratt, W. B. The role of the Hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu. Rev. Pharmacol. Toxicol. 37, 297–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrinol. Rev. 18, 306–360 (1997).

    CAS  Google Scholar 

  5. Bohen, S. P., Kralli, A. & Yamamoto, K. R. Hold'em and fold'm: chaperones and signal transduction. Science 268, 1303–1304 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15, 3917–3925 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, Y. & Lindquist, S. Heat-shock protein Hsp90 governs the activity of pp60v-src kinase. Proc. Natl Acad. Sci. USA 90, 7074–7078 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Cutforth, T. & Rubin, G. M. Mutations in Hsp83 and cdc37 impair signaling by the Sevenless receptor tyrosine kinase in Drosophila. Cell 77, 1027–1036 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Doyle, H. J. & Bishop, J. M. Torso, a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the Sevenless and EGF-R pathways in Drosophila. Genes Dev. 7, 633–646 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Van der Straten, A., Rommel, C., Dickson, B. & Hafen, E. The heat shock protein 83 (Hsp83) is required for Raf-mediated signaling in Drosophila. EMBO J. 16, 1961–1969 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nathan, C. & Xie, Q.-W. Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915–918 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Moncada, S., Palmer, R. M. J. & Higgs, E. A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  13. Liu, J., García-Cardeña, G. & Sessa, W. C. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry 34, 12333–12340 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. García-Cardeña, G., Oh, P., Liu, J., Schnitzer, J. E. & Sessa, W. C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc. Natl Acad. Sci. USA 93, 6448–6453 (1996).

    Article  ADS  PubMed  Google Scholar 

  15. Liu, J., Hughes, T. E. & Sessa, W. C. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J. Cell Biol. 137, 1525–1535 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. García-Cardeña, G., Fan, R., Stern, D. F., Liu, J. & Sessa, W. C. Endothelial nitric oxide is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271, 27237–27240 (1996).

    Article  PubMed  Google Scholar 

  17. Venema, V. J., Marrero, M. B. & Venema, R. C. Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem. Biophys. Res. Commun. 155, 801–807 (1996).

    Google Scholar 

  18. Courtneidge, S. A. & Bishop, J. M. Transit of pp60v-src to the plasma membrane. Proc. Natl Acad. Sci. USA 79, 7117–7121 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sessa, W. C. The nitric oxide synthase family of proteins. J. Vasc. Res. 31, 131–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Morbidelli, L. et al. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am. J. Physiol. 270, H411–H415 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi, K., Sawasaki, Y., Hata, J.-I., Mukai, K. & Goto, T. Spontaneous transformation and immortalization of human endothelial cells in vitro. Cell. Dev. Biol. 25, 265–274 (1990).

    Article  Google Scholar 

  23. Stebbins, C. E. et al. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Grenert, J. P. et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J. Biol. Chem. 272, 23843–23850 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Rees, D. D., Palmer, R. M. J., Schulz, R., Hodson, H. F. & Moncada, S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol. 101, 746–752 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagao, T., Illiano, S. & Vanhoutte, P. M. Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in Rats. Am. J. Physiol. 263, H1090–H1094 (1992).

    CAS  PubMed  Google Scholar 

  27. Gimbrone, M. A. J. in Progress in Hemostasis and Thrombosis (ed. Spaet, T. H.) 1–28 (Grune and Stratton, New York, 1976).

    Google Scholar 

  28. Frangos, J. A., Eskin, S. G., McIntire, L. V. & Ives, C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227, 1477–1479 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Furchgott, R. F. & Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Pollock for anti-eNOS monoclonal antibody; B. Mayer for nNOS polyclonal antibody; P. Martasek and B. S. Masters for recombinant eNOS; and R. Renteria and P.Kodaman for assistance in the nNOS study. This work was supported by grants from the NIH and the American Hearth Association. W.C.S. is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Sessa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Cardeña, G., Fan, R., Shah, V. et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821–824 (1998). https://doi.org/10.1038/33934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33934

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing