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NEWS AND VIEWS 

Sir Harold Jeffreys (1891-1989) 
SIR HAROLD JEFFREYS, who died on 18 
March, was one of the main architects of 
modem geophysics. In the distinguished 
English tradition of applied mathematics, 
he established with contemporary seismo­
logists (B. Gutenberg and I. Lehmann) the 
structure of the Earth's interior, and with 
his student (K.E. Bullen) provided in their 
seismic-travel-time tables an indispensable 
tool for research. Although the achieve­
ment was based on the simple laws of 
classical physics (newtonian mechanics, 
elasticity and heat conduction), he was a 
pioneer in searching for evidence in the 
Earth's mantle, the Moon and the satellites, 
of departures from perfect elasticity. This 
enabled him to explain why Earth models 
derived from the free oscillations of the 
Earth, discovered when long-period seis­
mometers were installed, differed slightly 
from those based on observations of body 
waves. 

Jeffreys contributed greatly to the 
discussion of astronomical data: to the 
precession of the Earth and to the slowing 
down of its rotation by tidal friction. A 
pioneer in what is now called comparative 
planetology, Jeffreys, by analogy with the 
Moon's figure, showed by spherical 
harmonic analysis of values of the accelera­
tion g due to gravity over land and ocean 
that the Earth also departs from the hydro­
static model over long wavelengths. 
Although this result was not believed, 
Jeffreys was proved correct when the geoid 
was determined by Earth satellites. The 
geoid is now accepted as evidence for solid­
state convection in the Earth's mantle- a 
remarkable paradox as Sir Harold's 
opposition to continental-drift theory was 
legendary. 

He was sceptical of the qualitative 

viewing distance. It is intuitively obvious 
that the further an object is away , the 
more similar its images become in the two 
eyes. (For the same reason, stellar paral­
laxes are difficult to measure accurately.) 
In fact, the difference in angular separa­
tion between two points in the left and 
right eyes (their disparity) decreases as the 
square of the viewing distance . We can­
not, then, use disparity by itself as a cue to 
the difference in distance of two objects. 
The same argument applies to two points 
on the surface of a single object , and thus 
to the three-dimensional shape of that 
object. Despite this, the perceived shape 
of an object such as a football does not 
greatly change with viewing distance. 
How does the visual system achieve this 
remarkable feat of shape constancy? 

What shape constancy requires is a 
property of disparity which, unlike abso­
lute differences in disparity between 
points (the disparity gradient), is invariant 
with viewing distance. Disparity curva­
ture, the second differential of disparity 
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evidence for Wegener's drift theory, for his 
aim, cogently expounded in seven editions 
of his great treatise The Earth was to 
provide a secure mathematical basis for his 
subject. When quantitative evidence came 
for Wegener's theory, it was in a field­
geomagnetism- which Jeffreys had not 
supposed to be relevant to an understand­
ing of the Earth's mechanics. Moreover he 
had been the leading advocate of the Earth­
contraction theory of mountain building, 
which had been almost universally believed 
by geoscientists until the great conversions 
of the mid-1960s to drift models. But Sir 
Harold, who thought deeply about scientific 
inference, once remarked "there is no such 
thing as a final scientific theory". 

Sir Harold and Lady Bertha Jeffreys' 
Methods of Mathematical Physics was 
greatly valued by students, although as a 
lecturer today, Jeffreys would scarcely 
have survived the British government's 
teaching-assessment schemes naively 
designed to 'improve higher education'. Yet 
he inspired generations of young geophys­
icists- and not only by his writing. 

Sir Harold was born at Birtley, and 
educated at Rutherford (Grammar) School 
and Armstrong College (now the University 
of Newcastle upon Tyne) and remained 
throughout his life devoted to Northumber­
land and County Durham. A Fellow of St 
John's College, Cambridge, for almost 75 
years and a Fellow of the Royal Society, 
from which he received a Royal and the 
Copley Medals, for 64, he remained actively 
interested in geophysics and kind and 
encouraging to young geophysicists. 
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over space , fulfils this requirement'. The 
second differential of disparity represents 
the rate at which the gradient of disparity 
is changing, or in other words the accel­
eration of disparity. Although the dispar­
ity gradient represents the difference in 
disparity of a point from a neighbouring 
point , the disparity curvature represents 
the difference in gradient between adja­
cent pairs of points. In the case of a flat 
surface tilted in depth, for example, the 
disparity curvature will be zero at what­
ever viewing distance, despite changes in 
the disparity gradient with distance . The 
disparity curvature is a property of the 
surface, which does not change with 
viewing distance. 

If the visual system does indeed extract 
disparity curvature , it would be using a 
strategy that has apparently been found 
useful in other contexts. Ernst Mach 
proposed that at any early stage in visual 
processing, the perceived brightness of 
points in the retinal image is represented 
by the second derivative of their physical 

intensity values, thus accounting for the 
appearance of 'Mach bands' at points on 
intensity luminance profiles where the 
gradient changes. It is now widely accep­
ted that an approximation to the second 
derivative of luminance could be extrac­
ted by neural receptive fields which sub­
tract light in their centre from light in 
their surround. But it is far less obvious 
what the equivalent operation for calcu­
lating disparity curvature might be . 

Following a similar suggestion by 
Koenderink', Rogers and Cagenello in 
their paper in this issue suggest a simple 
algorithm for computing disparity curva­
ture . To have a visible shape, an object 
must have markings on its surface. Even if 
these markings are straight lines on the 
surface (geodesics) they will have a two­
dimensional curvature in the retinal image. 
The difference in curvature between 
the two eyes is related to the three­
dimensional curvature of the surface and 
thus to the disparity curvature. The sug­
gestion is that curvature disparity could be 
used as an approximation in computing 
disparity curvature , and thus three­
dimensional shape . 

Rogers and Cagenello report experi­
ments in which observers judged the 
shape of objects defined by disparity 
information alone . In agreement with 
other work', they find that observers can 
discriminate very small differences in 
curvature. Their most important result is 
that observers can accurately match the 
perceived curvature of two parabolic 
surfaces at different distances. Moreover, 
experiments manipulating the surface 
markings on objects showed that obser­
vers were most accurate at shape judge­
ments when the orientation of the surface 
markers was such as to maximize their 
curvature disparity . 

The curvature-disparity conjecture is 
not incompatible with other suggestions 
about the way in which raw disparities 
could be used to derive shape informa­
tion'·". The visual system is never one to 
miss a good trick and it may well combine 
different sources of information such as 
curvature disparity and vertical dispari­
ties. The real world is much richer in 
information than the laboratory stereo­
scope, which may explain why there are 
some conditions in which shape can 
appear distorted when defined by dispar­
ity alone'. If curvature disparity is indeed 
used in vision, this may explain why 
observers are so good at extracting two-
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