Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1

Abstract

THE leukocyte adhesion molecule LFA-1 mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation1,2. LFA-1 (CD 1 la/CD 18) is a receptor for intercellular adhesion molecule 1 (ICAM-1, CD54), a surface molecule which is constitu-tively expressed on some tissues and induced on others in inflammation3–5. Induction of ICAM-1 on epithelial cells, endothelial cells and fibroblasts mediates LFA-1-dependent adhesion of lymphocytes4,6,7. Several lines of evidence have suggested the existence of a second LFA-1 ligand: homotypic adhesion of one cell line was inhibited by a monoclonal antibody to LFA-1, but not by one to ICAM-18; there exists an LFA-1-dependent, ICAM-1-indepen-dent pathway of adhesion to endothelial cells6; and also, there are some types of target cells in which LFA-1-dependent T-lymphocyte adhesion and lysis are independent of ICAM-19. We have cloned this second ligand, designated ICAM-2, using a novel method for identifying ligands of adhesion molecules. ICAM-2 is an integral membrane protein with two immunoglobulin-like domains, whereas ICAM-1 has five10,11. Remarkably, ICAM-2 is much more closely related to the two most N-terminal domains of ICAM-1 (34% identity) than either ICAM-1 or ICAM-2 is to other members of the immunoglobulin superfamily, demonstrating the existence of a subfamily of immunoglobulin-like ligands that bind the same integrin receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Springer, T. A., Dustin, M. L., Kishimoto, T. K. & Marlin, S. D. A Rev. Immun. 5, 223–252 (1987).

    Article  CAS  Google Scholar 

  2. Kishimoto, T. K. et al. Adv. Immun. (in the press).

  3. Marlin, S. D. & Springer, T. A. Cell 51, 813–819 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A. & Springer, T. A. J. Immun. 137, 245–254 (1986).

    CAS  PubMed  Google Scholar 

  5. Dustin, M. L., Staunton, D. E. & Springer, T. A. Immun. Today, 9, 213–215 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Dustin, M. L. & Springer, T. A. J. Cell Biol. 107, 321–331 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Dustin, M. L., Singer, K. H., Tuck, D. T. & Springer, T. A. J. exp. Med. 167, 1323–1340 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Rothlein, R., Dustin, M. L., Marlin, S. D. & Springer, T. A. J. Immun. 137, 1270–1274 (1986).

    CAS  PubMed  Google Scholar 

  9. Makgoba, M. W. et al. Eur. J. Immun. 18, 637–640 (1988).

    Article  CAS  Google Scholar 

  10. Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L. & Springer, T. A. Cell 52, 925–933 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Simmons, D., Makgoba, M. W. & Seed, N. Nature 331, 624–627 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Seed, B. & Aruffo, A. Proc. natn. Acad. Sci. U.S.A. 84, 3365–3369 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Wickens, M. & Stephenson, P. Science 226, 1045–1051 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. von Heijne, G. Nucleic Acids Res. 14, 4683–4690 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cunningham, B. A. et al. Science 236, 799–806 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Salzer, J. L., Holmes, W. P. & Colman, D. R. J. cell. Biol. 104, 957–965 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Davignon, D., Martz, E., Reynolds, T., Kurzinger, K. & Springer, T. A. Proc. natn. Acad. Sci. U.S.A. 78, 4535–4539 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Hynes, R. O. Cell 48, 549–554 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Ruoslahti, E. & Pierschbacher, M. D. Science 238, 491–497 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Staunton, D. E. et al. Cell 56, 849–853 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Greve, J. M. et al. Cell 56, 839–847 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Makgoba, M. W. et al. Nature 331, 86–88 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Larson, R. S., Corbi, A. L., Berman, L. & Springer, T. A. J. Cell Biol. 108, 703–712 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Seed, B. Nature 329, 840–842 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  27. Kingston, R. E. in Current Protocols in Molecular Biology 901–996 (Greene Publishing Associates, 1987).

    Google Scholar 

  28. Hirt, B. J. molec. Biol. 26, 365–369 (1967).

    Article  CAS  PubMed  Google Scholar 

  29. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Dayhoff, M. O., Barker, W. C. & Hunt, L. T. Meth. Enzym. 91, 524–545 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 211–245 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staunton, D., Dustin, M. & Springer, T. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339, 61–64 (1989). https://doi.org/10.1038/339061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339061a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing