Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Submillimetre images of dusty debris around nearby stars


Indirect detections of massive — presumably Jupiter-like — planets orbiting nearby Sun-like stars have recently been reported1,2. Rocky, Earth-like planets are much more difficult to detect, but clues to their possible existence can nevertheless be obtained from observations of the circumstellar debris disks of dust from which they form. The presence of such disks has been inferred3 from excess far-infrared emission but, with the exception of β Pictoris4, it has proved difficult to image these structures directly as starlight dominates the faint light scattered by the dust5. A more promising approach is to attempt to image the thermal emission from the dust grains at submillimetre wavelengths6,7. Here we present images of such emission around Fomalhaut, β Pictoris and Vega. For each star, dust emission is detected from regions comparable in size to the Sun's Kuiper belt of comets. The total dust mass surrounding each star is only a few lunar masses, so any Earth-like planets present must already have formed. The presence of the central cavity, approximately the size of Neptune's orbit, that we detect in the emission from Fomalhaut may indeed be the signature of such planets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: 850-μm images of the dust emission around Fomalhaut (a), β Pictoris (b) and Vega (c).
Figure 2: Circumstellar dust masses plotted as a function of stellar age (t).


  1. Mayor, M. & Queloz, D. A. Jupiter-sized companion to a solar-type star. Nature 378, 355–359 (1995).

    Article  ADS  Google Scholar 

  2. Butler, P. & Marcy, G. Detection of extrasolar planets. Annu. Rev. Astron. Astrophys. (in the press).

  3. Aumann, H. H. et al. Discovery of a shell around α Lyrae. Astrophys. J. 278, L23–L27 (1984).

    Article  ADS  Google Scholar 

  4. Smith, B. A. & Terrile, R. J. The circumstellar disk around β Pictoris. Science 226, 1421–1424 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kalas, P. & Jewitt, D. The detectability of β Pic-like circumstellar disks around nearby main-sequence stars. Astron. J. 111, 1347–1355 (1996).

    Article  ADS  Google Scholar 

  6. Zuckerman, B. & Becklin, E. E. Submillimetre studies of main-sequence stars. Astrophys. J. 414, 793–802 (1993).

    Article  ADS  Google Scholar 

  7. Chini, R., Krügel, E., Kreysa, E., Shustov, B. & Tutukov, A. Dust disks around Vega-type stars. Astron. Astrophys. 252, 220–228 (1991).

    ADS  Google Scholar 

  8. Holland, W. S. et al. in Advanced Technology MMW, Radio and Terahertz Telescopes (ed Phillips, T.) (Proc. SPIE 3357, in the press).

  9. Jenness, T. & Lightfoot, J. F. in Starlink User Manual Vol. 216 (1997).

    Google Scholar 

  10. Backman, D. E. & Paresce, F. in Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 1253–1304 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  11. Lester, D., Harvey, P., Smith, B., Colomé, C. & Low, F. The far-IR size of the dust cloud around Fomalhaut. Bull. Am. Astron. Soc. 21, 1085–1086 (1989).

    ADS  Google Scholar 

  12. Backman, D. E., Dasgupta, A. & Stencel, R. E. Model of a Kuiper Belt small grain population and resulting far-IR emission. Astrophys. J. 450, L35–L38 (1995).

    Article  ADS  Google Scholar 

  13. Harvey, P. M., Smith, B. J., DiFrancesco, J., Colomé, C. & Low, F. J. Far-IR constraints on dust shells around Vega-like stars. Astrophys. J. 471, 973–978 (1996).

    Article  ADS  Google Scholar 

  14. Jura, M. et al. Aproto-cometary cloud around HR 4796A? Astrophys. J. (submitted).

  15. Barrado y Navascues, D., Stauffer, J. R., Hartmann, L. & Balachandran, S. C. The age of Gliese 879 and Fomalhaut. Astrophys. J. 475, 313–321 (1997).

    Article  ADS  Google Scholar 

  16. Nakano, T. Formation of planets around stars of various masses–II. Stars of two and three solar masses and the origin and evolution of interstallar dust clouds. Mon. Not. R. Astron. Soc. 230, 551–571 (1988).

    Article  ADS  Google Scholar 

  17. Armitage, P. J. & Pringle, J. E. Radiation-induced warping of protostellar accretion disks. Astrophys. J. 488, L47–L50 (1997).

    Article  ADS  Google Scholar 

  18. Kalas, P. & Jewitt, D. Asymmetries in the β Pictoris disk. Astron. J. 110, 794–804 (1995).

    Article  ADS  CAS  Google Scholar 

  19. van der Bliek, N. S., Prusti, T. & Waters, L. B. F. M. Vega: smaller dust grains in a larger shell. Astron. Astrophys. 285, 229–232 (1994).

    ADS  Google Scholar 

  20. Gulliver, A. F., Hill, G. & Adelman, S. J. Vega: a rapidly rotating pole-on star. Astrophys. J. 429, L81–L84 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Heap, S. R. et al. Hubble/STIS coronographic imagery of β Pictoris. Bull. Am. Astron. Soc. 29, 1285 (1997).

    ADS  Google Scholar 

  22. Maeder, A. & Meynet, G. Tables of evolutionary star models from 0.85 to 120 solar masses, with overshooting and mass loss. Astron. Astrophys. Suppl. 76, 411–425 (1988).

    ADS  Google Scholar 

  23. Mannings, V. G. & Emerson, J. P. Dust in disks around T-Tauri stars: Grain growth? Mon. Not. R. Astron. Soc. 267, 361–378 (1994).

    Article  ADS  Google Scholar 

  24. Burrows, A. et al. in Brown Dwarfs and Extrasolar Planets (eds Rebolo, R., Martin, E. L. & Zapatero-Osorio, M. R.) 354–369 (ASP conf. ser. Vol. 134, 1998).

    Google Scholar 

  25. Maher, K. A. & Stevenson, D. J. Impact frustration of the origin of life. Nature 331, 612–614 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Pollack, J. B. et al. Composition and radiative properties of grains in molecular clouds and accretion disks. Astrophys. J. 421, 615–639 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Freudling, W., Lagrange, A.-M., Vidal-Madjar, A., Ferlet, R. & Forveille, T. Gas around β Pictoris: an upper limit on the HI content. Astron. Astrophys. 301, 231–235 (1995).

    ADS  CAS  Google Scholar 

  28. Smail, I., Ivison, R. J. & Blain, A. W. Adeep submillimetre survey of lensing clusters: A new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997).

    Article  ADS  Google Scholar 

  29. Jura, M. et al. The fate of the solid matter orbiting HR4796A. Astrophys. J. 445, 45–53 (1995).

    Article  Google Scholar 

  30. Mannings, V. G. Submillimetre observations of Herbig Ae/Be systems. Mon. Not. R. Astron. Soc. 271, 587–600 (1994).

    Article  ADS  Google Scholar 

Download references


The JCMT is operated by the Joint Astronomy Centre, on behalf of the UK Particle Physics and Astronomy Research Council, the Netherlands Organization for Scientific Research, and the Canadian National Research Council. This research was also supported, in part, by NSF and NASA grants to UCLA. We thank E. Becklin for suggestions, and M. Plavec for information regarding stellar models. We also thank P. Kalas and B. A. Smith for sharing unpublished data with us.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wayne S. Holland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holland, W., Greaves, J., Zuckerman, B. et al. Submillimetre images of dusty debris around nearby stars. Nature 392, 788–791 (1998).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing