Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atmospheric 14C and century-scale solar oscillations

Abstract

THE solar-wind plasma in our interplanetary space deflects part of the Earth-bound cosmic-ray flux through its magnetic interaction with the electrically charged incoming particles. Because changes in the magnetic properties of the plasma originate at the Sun's surface, the cosmic-ray flux arriving at Earth therefore depends on the changing surface conditions of the Sun. Consequently, by monitoring the variable production rate of cos-mogenic isotopes (such as 14C) in our atmosphere, a time history of changing conditions of the Sun's surface can be obtained. Trees, through carbon dioxide assimilation, lay down a 14C record which provides clues towards the causes underlying 14C production-rate changes. Here we show from maximum-entropy spectral analysis of a 9,600-yr high-precision 14C chronology that changes occur in the Sun's convective zone with a fundamental oscillatory mode of about 2.4 x 10−3 yr−1 (420-yr period), and we also identify several harmonics. Previous searches1–3 for cyclicity in the atmospheric 14C record have yielded periods near 140 and 200 yr. We discuss the implications of a longer and more precise 14C record.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stuiver, M. Nature 286, 868–871 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Neftel, A., Oeschger, H. & Suess, H. E. Earth planet. Sci. Lett. 56, 127–147 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Sonett, C. P. Rev. Geophys. Space Phys. 22, 239–254 (1984).

    Article  ADS  Google Scholar 

  4. Stuiver, M. & Polach, H. S. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  5. Stuiver, M. & Kra, R. (eds) Radiocarbon 28, 805–1030 (1986).

  6. Stuiver, M. & Pearson, G. W. Radiocarbon 28, 805–838 (1986).

    Article  CAS  Google Scholar 

  7. Pearson, G. W. & Stuiver, M. Radiocarbon 28, 839–862 (1986).

    Article  CAS  Google Scholar 

  8. Pearson, G. W., Pilcher, J. R., Baillie, M. G. L., Corbett, D. M. & Qua, F. Radiocarbon 28, 911–934 (1986).

    Article  CAS  Google Scholar 

  9. Stuiver, M., Kromer, B., Becker, B. & Ferguson, C. W. Radiocarbon 28, 969–979 (1986).

    Article  CAS  Google Scholar 

  10. Linick, T. W., Suess, H. E. & Becker, B. Radiocarbon 27, 20–32 (1985).

    Article  Google Scholar 

  11. Linick, T. W., Long, A., Damon, P. E. & Ferguson, C. W. Radiocarbon 28, 943–953 (1986).

    Article  CAS  Google Scholar 

  12. Kromer, B. et al. Radiocarbon 28, 954–960 (1986).

    Article  CAS  Google Scholar 

  13. Stuiver, M. & Quay, P. D. Science 207, 11–19 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Eddy, J. A. Science 192, 1189–1202 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Stuiver, M. & Grootes, P. M. in The Ancient Sun (eds Pepin, R. O., Eddy, J. A. & Merrill, R. B.) 165–173 (Pergamon, New York, 1980).

    Google Scholar 

  16. Beer, J. et al. Nature 331, 675–679 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Stuiver, M. & Braziunas, T. F. in Secular Solar and Geomagnetic Variations in the Last 10,000 Years (eds Stephenson, F. R. & Wolfendale, A. W.) 245–266 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  18. Mitchell, J. M. et al. Tech. Note No. 79. 33–79 (World Meteorological Organization, No. 195, TP100, Geneva, 1966).

  19. Burg, J. P. thesis, Stanford Univ. (1975).

  20. Barrodale, I. & Erickson, R. E. Geophysics 45, 433–446 (1980).

    Article  ADS  Google Scholar 

  21. Akaike, H. Ann. Inst. Statist. Math. 21, 243–247 (1969).

    Article  MathSciNet  Google Scholar 

  22. Sonett, C. P. & Suess, H. E. Nature 307, 141–143 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Feynman, J. & Fougere, P. F. J. geophys. Res. 89, 3023–3027 (1984).

    Article  ADS  Google Scholar 

  24. Attolini, M. R., Galli, M. & Nanni, T. in Secular Solar and Geomagnetic Variations in the Last 10,000 Years (eds Stephenson, F. R. & Wolfendale, A. W.) 49–68 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  25. Schatten, K. H. Geophys. Res. Lett. 15, 121–124 (1988).

    Article  ADS  Google Scholar 

  26. Wilson, R. C. & Hudson, H. S. Nature 332, 810–812 (1988).

    Article  ADS  Google Scholar 

  27. Wigley, T. M. L. in Secular Solar and Geomagnetic Variations in the Last 10,000 Years (eds Stephenson F. R. & Wolfendale, A. W.) 209–224 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  28. Röthlisberger, F. in 10000 Jahre Gletschergeschichte der Erde (Sauerländer, Aarau, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuiver, M., Braziunas, T. Atmospheric 14C and century-scale solar oscillations. Nature 338, 405–408 (1989). https://doi.org/10.1038/338405a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338405a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing