Abstract
A FUNDAMENTAL step in visual pattern recognition is the establishment of relations between spatially separate features. Recently, we have shown that neurons in the cat visual cortex have oscillatory responses in the range 40–60 Hz (refs 1,2) which occur in synchrony for cells in a functional column and are tightly correlated with a local oscillatory field potential. This led us to hypothesize that the synchronization of oscillatory responses of spatially distributed, feature selective cells might be a way to establish relations between features in different parts of the visual field2,3. In support of this hypothesis, we demonstrate here that neurons in spatially separate columns can synchronize their oscillatory responses. The synchronization has, on average, no phase difference, depends on the spatial separation and the orientation preference of the cells and is influenced by global stimulus properties.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Face-induced gamma oscillations and event-related potentials in patients with epilepsy: an intracranial EEG study
BMC Neuroscience Open Access 13 June 2022
-
Deconvolution improves the detection and quantification of spike transmission gain from spike trains
Communications Biology Open Access 31 May 2022
-
The effect of alterations of schizophrenia-associated genes on gamma band oscillations
Schizophrenia Open Access 28 April 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
£199.00
only £3.90 per issue
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Gray, C. M. & Singer, W. Soc. Neumsci. Abstr. 404, 3 (1987).
Gray, C. M. & Singer, W. Proc. natn. Acad. Sci. U.S.A. (in the press).
von der Malsburg, C. & Singer, W. in Neurobiology of Neocortex (Proceedings of the Dahlem Conference) 69–99 (eds Rakiç, P. & Singer, W.) (Wiley, Chichester, 1988).
Perkel, D. H., Gerstein, G. L. & Moore, G. P. Biophys. J. 7, 391–418 (1967).
Perkel, D. H., Gerstein, G. L. & Moore, G. P. Biophys. J. 7, 419–440 (1967).
Tso, D., Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 6, 1160–1170 (1986).
Toyama, K., Kimura, M. & Tanaka, K. J. Neurophys. 46, 191–201 (1981).
Toyama, K., Kimura, M. & Tanaka, K. J. Neurophys. 46, 202–213 (1981).
Michalski, A., Gerstein, G. L., Czarkowska, J. & Tarnecki, R. Expl Brain Res. 51, 97–107 (1983).
Aiple, F. & Krüger, J. Expl Brain Res. 72, 141–149 (1988).
Krüger, J. Rev. Physiol. Biochem. Pharmac. 98, 177–233 (1983).
Hata, Y., Tsumoto, T., Sato, H., Hagihara, K. & Tamura, H. Nature 335, 815–817 (1988).
Creutzfeldt, O. D., Garey, L. J., Kuroda, R. & Wolff, J.-R. Expl Brain Res. 27, 419–440 (1977).
Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).
Rockland, K. S. & Lund, J. Science 215, 1532–1534 (1982).
Mitchison, G. & Crick, F. Proc. natn. Acad. Sci. U.S.A. 79, 3661–3665 (1982).
Gilbert, C. D. & Wiesel, T. N. J. Neumsci. 3, 1116–1133 (1983).
Martin, K. A. C. & Whitteridge, D. J. Physiol. 353, 463–504 (1984).
Kisvarday, Z. F. et al. Expl Brain Res. 64, 541–552 (1986).
Montero, V. M. Brain Behav. Evol. 18, 194–218 (1981).
Barlow, H. B. Proc. R. Soc. B212, 1–34 (1981).
Marr, D. & Poggio, T. Science 194, 283–287 (1976).
Julesz, B. Nature 290, 91–97 (1981).
Ballard, D. H., Hinton, G. E. & Sejnowski, T. J. Nature 306, 21–26 (1983).
von der Malsburg, C. & Schneider, W. Biol. Cybern 54, 29–40 (1986).
Nelson, J. I. in Models of the Visual Cortex (eds Rose, D. & Dobson, V. G.) 108–122 (Wiley, Chichester, 1985).
Gray, C. M. & Singer, W. Eur. J. Neumsci. Suppl. 1, 86.4 (1988).
Singer, W., Gray, C. M., Engel, A. & König, P. Soc. Neurosci. Abstr. 14, 362.13 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gray, C., König, P., Engel, A. et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989). https://doi.org/10.1038/338334a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/338334a0
This article is cited by
-
Face-induced gamma oscillations and event-related potentials in patients with epilepsy: an intracranial EEG study
BMC Neuroscience (2022)
-
Optogenetics: implications for Alzheimer’s disease research and therapy
Molecular Brain (2022)
-
Deconvolution improves the detection and quantification of spike transmission gain from spike trains
Communications Biology (2022)
-
The structures and functions of correlations in neural population codes
Nature Reviews Neuroscience (2022)
-
The effect of alterations of schizophrenia-associated genes on gamma band oscillations
Schizophrenia (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.