Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fertile transgenic rice plants regenerated from transformed protoplasts

Abstract

THE generation of transgenic plants using gene transfer techniques is important to both the investigation of gene regulation and the genetic engineering of crops1. The Ti plasmid of Agrobacterium tumefaciens is now routinely used to transform dicotyledonous plants2, and the transfer of foreign genes to unorganized tissue3–6and plants7,8 has been accomplished using direct DNA transfer methods9–11. A protocol for the easy and reproducible production of fertile transgenic cereals, however, has not yet been described. We report here the production of fertile transgenic rice plants obtained by introducing the bacterial hph gene, encoding hygromycin B resistance12 (Hmr), into protoplasts of Oryza sativa (L.) by electroporation. The non-selectable gene encoding β-glucuronidase was also transferred with the hph gene and its expression was detected in the progeny of the stable transformant.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schell, J. S. Science 237, 1176–1183 (1987).

    ADS  Article  Google Scholar 

  2. 2

    Cocking, E. C. & Davey, M. R. Science 236, 1259–1262 (1987).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Potrykus, I. et al. Molec. gen, Genet. 199, 161–168 (1985).

    Article  Google Scholar 

  4. 4

    Lörz, H., Baker, B. & Schell, J. Molec. gen. Genet. 199, 178–182 (1985).

    Article  Google Scholar 

  5. 5

    Fromm, M., Taylor, L. P. & Walbot, V. Nature 319, 791–793 (1986).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Uchimiya, H. et al. Molec. gen. Genet. 205, 461–468 (1986).

    Article  Google Scholar 

  7. 7

    de la Pen̄a, A., Lörz, H. & Schell, J. Nature 325, 274–276 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Rhodes, C. A., Pierce, D. A., Metller, I. J., Mascarenhas, D. & Detmer, J. Science 240, 204–207 (1988).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Davey, M. R. et al. Pl. Sci. Lett. 18, 307–313 (1980).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Krens, F. A., Molendijk, L., Wullem, G. L. & Schilperoort, R. A. Nature 296, 72–74 (1982).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Paszkowski, J. et al. EMBO J. 3, 2717–2722 (1984).

    CAS  Article  Google Scholar 

  12. 12

    Gritz, L. & Davies, J. Gene 25, 179–188 (1983).

    CAS  Article  Google Scholar 

  13. 13

    Pietrzak, M., Shillito, R. D., Hohn, T. & Potrykus, I. Nucleic Acids Res. 14, (1986).

  14. 14

    Kyozuka, J., Hayashi, Y. & Shimamoto, K. Molec. gen. Genet. 206, 408–413 (1987).

    CAS  Article  Google Scholar 

  15. 15

    Ohira, K., Ojima, K. & Fujiwara, A. Pl. Cell Physiol. Tokyo 14, 1113–1121 (1973).

    CAS  Google Scholar 

  16. 16

    Chu, C. C. et al. Scientia. sin. 16, 659–688 (1975).

    Google Scholar 

  17. 17

    Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. EMBO J. 6, 3901–3907 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J. & Potrykus, I. Biol Technology 4, 1093–1096 (1986).

    CAS  Google Scholar 

  19. 19

    Murashige, T. & Skoog, F. Physiologia Pl. 15, 473–497 (1962).

    CAS  Article  Google Scholar 

  20. 20

    Blochlinger, K. & Diggelmann, H. Molec. cell. Biol. 4, 2929–2931 (1984).

    CAS  Article  Google Scholar 

  21. 21

    Walbot, V. & Warren, C. Molec. gen. Genet. 211, 27–34 (1988).

    CAS  Article  Google Scholar 

  22. 22

    Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    CAS  Article  Google Scholar 

  23. 23

    Feinberg, A. P. & Vogelstein, B. Analyt. Biochem. 132, 6–13 (1983).

    CAS  Article  Google Scholar 

  24. 24

    Jefferson, R. A. Pl. molec. Biol. Rep. 5, 387–405 (1987).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shimamoto, K., Terada, R., Izawa, T. et al. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338, 274–276 (1989). https://doi.org/10.1038/338274a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing